Self-Improving Interference Management Based on Deep Learning With
Uncertainty Quantification
- URL: http://arxiv.org/abs/2401.13206v1
- Date: Wed, 24 Jan 2024 03:28:48 GMT
- Title: Self-Improving Interference Management Based on Deep Learning With
Uncertainty Quantification
- Authors: Hyun-Suk Lee, Do-Yup Kim, Kyungsik Min
- Abstract summary: This paper presents a self-improving interference management framework tailored for wireless communications.
Our approach addresses the computational challenges inherent in traditional optimization-based algorithms.
A breakthrough of our framework is its acknowledgment of the limitations inherent in data-driven models.
- Score: 10.403513606082067
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a groundbreaking self-improving interference management
framework tailored for wireless communications, integrating deep learning with
uncertainty quantification to enhance overall system performance. Our approach
addresses the computational challenges inherent in traditional
optimization-based algorithms by harnessing deep learning models to predict
optimal interference management solutions. A significant breakthrough of our
framework is its acknowledgment of the limitations inherent in data-driven
models, particularly in scenarios not adequately represented by the training
dataset. To overcome these challenges, we propose a method for uncertainty
quantification, accompanied by a qualifying criterion, to assess the
trustworthiness of model predictions. This framework strategically alternates
between model-generated solutions and traditional algorithms, guided by a
criterion that assesses the prediction credibility based on quantified
uncertainties. Experimental results validate the framework's efficacy,
demonstrating its superiority over traditional deep learning models, notably in
scenarios underrepresented in the training dataset. This work marks a
pioneering endeavor in harnessing self-improving deep learning for interference
management, through the lens of uncertainty quantification.
Related papers
- Know Where You're Uncertain When Planning with Multimodal Foundation Models: A Formal Framework [54.40508478482667]
We present a comprehensive framework to disentangle, quantify, and mitigate uncertainty in perception and plan generation.
We propose methods tailored to the unique properties of perception and decision-making.
We show that our uncertainty disentanglement framework reduces variability by up to 40% and enhances task success rates by 5% compared to baselines.
arXiv Detail & Related papers (2024-11-03T17:32:00Z) - Quantifying calibration error in modern neural networks through evidence based theory [0.0]
This paper introduces a novel framework for quantifying the trustworthiness of neural networks by incorporating subjective logic into the evaluation of Expected Error (ECE)
We demonstrate the effectiveness of this approach through experiments on MNIST and CIFAR-10 datasets where post-calibration results indicate improved trustworthiness.
The proposed framework offers a more interpretable and nuanced assessment of AI models, with potential applications in sensitive domains such as healthcare and autonomous systems.
arXiv Detail & Related papers (2024-10-31T23:54:21Z) - Risk-Sensitive Stochastic Optimal Control as Rao-Blackwellized Markovian
Score Climbing [3.9410617513331863]
optimal control of dynamical systems is a crucial challenge in sequential decision-making.
Control-as-inference approaches have had considerable success, providing a viable risk-sensitive framework to address the exploration-exploitation dilemma.
This paper introduces a novel perspective by framing risk-sensitive control as Markovian reinforcement score climbing under samples drawn from a conditional particle filter.
arXiv Detail & Related papers (2023-12-21T16:34:03Z) - The Fairness Stitch: Unveiling the Potential of Model Stitching in
Neural Network De-Biasing [0.043512163406552]
This study introduces a novel method called "The Fairness Stitch" to enhance fairness in deep learning models.
We conduct a comprehensive evaluation of two well-known datasets, CelebA and UTKFace.
Our findings reveal a notable improvement in achieving a balanced trade-off between fairness and performance.
arXiv Detail & Related papers (2023-11-06T21:14:37Z) - Uncertainty Estimation by Fisher Information-based Evidential Deep
Learning [61.94125052118442]
Uncertainty estimation is a key factor that makes deep learning reliable in practical applications.
We propose a novel method, Fisher Information-based Evidential Deep Learning ($mathcalI$-EDL)
In particular, we introduce Fisher Information Matrix (FIM) to measure the informativeness of evidence carried by each sample, according to which we can dynamically reweight the objective loss terms to make the network more focused on the representation learning of uncertain classes.
arXiv Detail & Related papers (2023-03-03T16:12:59Z) - Post-hoc Uncertainty Learning using a Dirichlet Meta-Model [28.522673618527417]
We propose a novel Bayesian meta-model to augment pre-trained models with better uncertainty quantification abilities.
Our proposed method requires no additional training data and is flexible enough to quantify different uncertainties.
We demonstrate our proposed meta-model approach's flexibility and superior empirical performance on these applications.
arXiv Detail & Related papers (2022-12-14T17:34:11Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - Uncertainty as a Form of Transparency: Measuring, Communicating, and
Using Uncertainty [66.17147341354577]
We argue for considering a complementary form of transparency by estimating and communicating the uncertainty associated with model predictions.
We describe how uncertainty can be used to mitigate model unfairness, augment decision-making, and build trustworthy systems.
This work constitutes an interdisciplinary review drawn from literature spanning machine learning, visualization/HCI, design, decision-making, and fairness.
arXiv Detail & Related papers (2020-11-15T17:26:14Z) - Reliable Off-policy Evaluation for Reinforcement Learning [53.486680020852724]
In a sequential decision-making problem, off-policy evaluation estimates the expected cumulative reward of a target policy.
We propose a novel framework that provides robust and optimistic cumulative reward estimates using one or multiple logged data.
arXiv Detail & Related papers (2020-11-08T23:16:19Z) - Accurate and Robust Feature Importance Estimation under Distribution
Shifts [49.58991359544005]
PRoFILE is a novel feature importance estimation method.
We show significant improvements over state-of-the-art approaches, both in terms of fidelity and robustness.
arXiv Detail & Related papers (2020-09-30T05:29:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.