論文の概要: AutoCas: Autoregressive Cascade Predictor in Social Networks via Large Language Models
- arxiv url: http://arxiv.org/abs/2502.18040v1
- Date: Tue, 25 Feb 2025 09:54:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:33.532946
- Title: AutoCas: Autoregressive Cascade Predictor in Social Networks via Large Language Models
- Title(参考訳): AutoCas: 大規模言語モデルによるソーシャルネットワークにおける自動回帰カスケード予測
- Authors: Yuhao Zheng, Chenghua Gong, Rui Sun, Juyuan Zhang, Liming Pan, Linyuan Lv,
- Abstract要約: 情報カスケードにおける人気予測は,ソーシャルコンピューティングにおいて重要な役割を担っている。
同時に、利用可能なカスケードデータの量は、大規模言語モデル(LLM)のトレーニングに使用される膨大なデータセットと比較しても比較的限られている。
本稿では,自動回帰情報カスケード予測器(AutoCas)について紹介する。
- 参考スコア(独自算出の注目度): 3.1040199301620155
- License:
- Abstract: Popularity prediction in information cascades plays a crucial role in social computing, with broad applications in viral marketing, misinformation control, and content recommendation. However, information propagation mechanisms, user behavior, and temporal activity patterns exhibit significant diversity, necessitating a foundational model capable of adapting to such variations. At the same time, the amount of available cascade data remains relatively limited compared to the vast datasets used for training large language models (LLMs). Recent studies have demonstrated the feasibility of leveraging LLMs for time-series prediction by exploiting commonalities across different time-series domains. Building on this insight, we introduce the Autoregressive Information Cascade Predictor (AutoCas), an LLM-enhanced model designed specifically for cascade popularity prediction. Unlike natural language sequences, cascade data is characterized by complex local topologies, diffusion contexts, and evolving dynamics, requiring specialized adaptations for effective LLM integration. To address these challenges, we first tokenize cascade data to align it with sequence modeling principles. Next, we reformulate cascade diffusion as an autoregressive modeling task to fully harness the architectural strengths of LLMs. Beyond conventional approaches, we further introduce prompt learning to enhance the synergy between LLMs and cascade prediction. Extensive experiments demonstrate that AutoCas significantly outperforms baseline models in cascade popularity prediction while exhibiting scaling behavior inherited from LLMs. Code is available at this repository: https://anonymous.4open.science/r/AutoCas-85C6
- Abstract(参考訳): 情報カスケードにおける人気予測は、バイラルマーケティング、誤情報制御、コンテンツレコメンデーションなど幅広い応用において、ソーシャルコンピューティングにおいて重要な役割を担っている。
しかし,情報伝達機構,ユーザ行動,時間的活動パターンは大きな多様性を示し,このような変動に適応可能な基礎モデルを必要とする。
同時に、利用可能なカスケードデータの量は、大規模言語モデル(LLM)のトレーニングに使用される膨大なデータセットと比較しても、比較的限られている。
近年の研究では、異なる時系列領域にまたがる共通性を活用することで、時系列予測にLLMを活用する可能性を示している。
この知見に基づいて,ケースケード人気予測に特化して設計されたLDM強化モデルであるAutoregressive Information Cascade Predictor(AutoCas)を紹介する。
自然言語のシーケンスとは異なり、カスケードデータは複雑な局所位相、拡散コンテキスト、進化力学によって特徴づけられる。
これらの課題に対処するため、まずカスケードデータをトークン化し、シーケンスモデリングの原則と整合させる。
次に, 自己回帰モデリングタスクとしてカスケード拡散を再構成し, LLMのアーキテクチャ的強度をフル活用する。
従来の手法以外にも,LLMとカスケード予測の相乗効果を高めるための即時学習を導入している。
大規模な実験により、AutoCasはLLMから受け継いだスケーリング挙動を示しながら、カスケード人気予測においてベースラインモデルを大幅に上回ることを示した。
コードは、このリポジトリで入手できる。 https://anonymous.4open.science/r/AutoCas-85C6
関連論文リスト
- Scalable Language Models with Posterior Inference of Latent Thought Vectors [52.63299874322121]
Latent-Thought Language Models (LTM) には、潜在空間における明示的な事前モデルに従う明示的な潜在思考ベクトルが含まれている。
LTMは従来のLLMを超える拡張次元を持ち、構造化された設計空間を提供する。
LTMは従来の自己回帰モデルや離散拡散モデルよりも、検証の難易度やゼロショット言語モデリングにおいて著しく優れている。
論文 参考訳(メタデータ) (2025-02-03T17:50:34Z) - Multi-Head Self-Attending Neural Tucker Factorization [5.734615417239977]
本稿では,高次元および不完全(HDI)テンソルの学習表現に適したニューラルネットワークに基づくテンソル分解手法を提案する。
提案したMSNTucFモデルでは,観測結果の欠落を推定する上で,最先端のベンチマークモデルと比較して優れた性能を示す。
論文 参考訳(メタデータ) (2025-01-16T13:04:15Z) - Reprogramming Foundational Large Language Models(LLMs) for Enterprise Adoption for Spatio-Temporal Forecasting Applications: Unveiling a New Era in Copilot-Guided Cross-Modal Time Series Representation Learning [0.0]
パティオ時間予測は、輸送システム、物流、サプライチェーン管理など、様々な分野において重要な役割を担っている。
本稿では,オープンソースの大規模・小規模言語モデル(LLM,LM)と従来の予測手法を組み合わせたハイブリッド手法を提案する。
論文 参考訳(メタデータ) (2024-08-26T16:11:53Z) - Mamba-PTQ: Outlier Channels in Recurrent Large Language Models [49.1574468325115]
本研究では,マンバモデルが注目型LLMで観測された異常チャネルと同じパターンを示すことを示す。
本研究では,SSMの定量化が難しい理由は,トランスフォーマーベースLLMで見られるような,アクティベーションアウトレーヤによるものであることを示す。
論文 参考訳(メタデータ) (2024-07-17T08:21:06Z) - Mamba-FSCIL: Dynamic Adaptation with Selective State Space Model for Few-Shot Class-Incremental Learning [113.89327264634984]
FSCIL(Few-shot class-incremental Learning)は、最小限のトレーニングサンプルを持つモデルに新しいクラスを統合するという課題に直面している。
従来の手法では、固定パラメータ空間に依存する静的適応を広く採用し、逐次到着するデータから学習する。
本稿では、動的適応のための中間特徴に基づいてプロジェクションパラメータを動的に調整する2つの選択型SSMプロジェクタを提案する。
論文 参考訳(メタデータ) (2024-07-08T17:09:39Z) - TPLLM: A Traffic Prediction Framework Based on Pretrained Large Language Models [27.306180426294784]
大規模言語モデル(LLM)を利用した新しい交通予測フレームワークであるTPLLMを紹介する。
本フレームワークでは,Lonal Neural Networks (LoCNNs) に基づくシーケンス埋め込み層と,Graph Contemporalal Networks (GCNs) に基づくグラフ埋め込み層を構築し,シーケンスの特徴と空間的特徴を抽出する。
実世界の2つのデータセットの実験では、フルサンプルと数ショットの予測シナリオの両方で、満足できるパフォーマンスを示している。
論文 参考訳(メタデータ) (2024-03-04T17:08:57Z) - To Repeat or Not To Repeat: Insights from Scaling LLM under Token-Crisis [50.31589712761807]
大規模言語モデル(LLM)は、事前トレーニング中にトークンに悩まされていることで知られており、Web上の高品質なテキストデータは、LSMのスケーリング制限に近づいている。
本研究では,事前学習データの再学習の結果について検討し,モデルが過度に適合する可能性が示唆された。
第2に, マルチエポック劣化の原因となる要因について検討し, データセットのサイズ, モデルパラメータ, トレーニング目標など, 重要な要因について検討した。
論文 参考訳(メタデータ) (2023-05-22T17:02:15Z) - Masked Autoencoding for Scalable and Generalizable Decision Making [93.84855114717062]
MaskDPは、強化学習と行動クローンのためのシンプルでスケーラブルな自己教師付き事前学習手法である。
我々は,MaskDPモデルにより,単一ゴールや複数ゴール到達といった新しいBCタスクへのゼロショット転送能力が得られることを発見した。
論文 参考訳(メタデータ) (2022-11-23T07:04:41Z) - Large Language Models with Controllable Working Memory [64.71038763708161]
大規模言語モデル(LLM)は、自然言語処理(NLP)の一連のブレークスルーをもたらした。
これらのモデルをさらに切り離すのは、事前訓練中に内在する膨大な量の世界的知識だ。
モデルの世界知識が、文脈で提示された事実情報とどのように相互作用するかは、まだ解明されていない。
論文 参考訳(メタデータ) (2022-11-09T18:58:29Z) - Bayesian Active Learning for Discrete Latent Variable Models [19.852463786440122]
アクティブラーニングは、モデルのパラメータに適合するために必要なデータ量を削減しようとする。
潜在変数モデルは神経科学、心理学、その他の様々な工学、科学分野において重要な役割を果たす。
論文 参考訳(メタデータ) (2022-02-27T19:07:12Z) - Prediction-Centric Learning of Independent Cascade Dynamics from Partial
Observations [13.680949377743392]
本稿では,このモデルから生成された予測が正確であるような拡散モデルの学習の問題に対処する。
本稿では,スケーラブルな動的メッセージパッシング手法に基づく計算効率のよいアルゴリズムを提案する。
学習モデルからの抽出可能な推論は,元のモデルと比較して限界確率の予測精度がよいことを示す。
論文 参考訳(メタデータ) (2020-07-13T17:58:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。