Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences
- URL: http://arxiv.org/abs/2506.02698v2
- Date: Fri, 06 Jun 2025 03:14:26 GMT
- Title: Smoothed Preference Optimization via ReNoise Inversion for Aligning Diffusion Models with Varied Human Preferences
- Authors: Yunhong Lu, Qichao Wang, Hengyuan Cao, Xiaoyin Xu, Min Zhang,
- Abstract summary: Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data.<n>We propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective.<n>Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods.
- Score: 13.588231827053923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Direct Preference Optimization (DPO) aligns text-to-image (T2I) generation models with human preferences using pairwise preference data. Although substantial resources are expended in collecting and labeling datasets, a critical aspect is often neglected: \textit{preferences vary across individuals and should be represented with more granularity.} To address this, we propose SmPO-Diffusion, a novel method for modeling preference distributions to improve the DPO objective, along with a numerical upper bound estimation for the diffusion optimization objective. First, we introduce a smoothed preference distribution to replace the original binary distribution. We employ a reward model to simulate human preferences and apply preference likelihood averaging to improve the DPO loss, such that the loss function approaches zero when preferences are similar. Furthermore, we utilize an inversion technique to simulate the trajectory preference distribution of the diffusion model, enabling more accurate alignment with the optimization objective. Our approach effectively mitigates issues of excessive optimization and objective misalignment present in existing methods through straightforward modifications. Our SmPO-Diffusion achieves state-of-the-art performance in preference evaluation, outperforming baselines across metrics with lower training costs. The project page is https://jaydenlyh.github.io/SmPO-project-page/.
Related papers
- Divergence Minimization Preference Optimization for Diffusion Model Alignment [58.651951388346525]
Divergence Minimization Preference Optimization (DMPO) is a principled method for aligning diffusion models by minimizing reverse KL divergence.<n>Our results show that diffusion models fine-tuned with DMPO can consistently outperform or match existing techniques.<n>DMPO unlocks a robust and elegant pathway for preference alignment, bridging principled theory with practical performance in diffusion models.
arXiv Detail & Related papers (2025-07-10T07:57:30Z) - Self-NPO: Negative Preference Optimization of Diffusion Models by Simply Learning from Itself without Explicit Preference Annotations [60.143658714894336]
Diffusion models have demonstrated remarkable success in various visual generation tasks, including image, video, and 3D content generation.<n> Preference optimization (PO) is a prominent and growing area of research that aims to align these models with human preferences.<n>We introduce Self-NPO, a Negative Preference Optimization approach that learns exclusively from the model itself.
arXiv Detail & Related papers (2025-05-17T01:03:46Z) - Diffusion-NPO: Negative Preference Optimization for Better Preference Aligned Generation of Diffusion Models [32.586647934400105]
We argue that existing preference alignment methods neglect the critical role of handling unconditional/negative-conditional outputs.<n>We propose a straightforward but versatile effective approach that involves training a model specifically attuned to negative preferences.<n>Our approach integrates seamlessly with models such as SD1.5, SDXL, video diffusion models and models that have undergone preference optimization.
arXiv Detail & Related papers (2025-05-16T13:38:23Z) - Leveraging Robust Optimization for LLM Alignment under Distribution Shifts [52.983390470606146]
Preference alignment methods are increasingly critical for steering large language models to generate outputs consistent with human values.<n>We propose a novel distribution-aware optimization framework that improves preference alignment despite such shifts.
arXiv Detail & Related papers (2025-04-08T09:14:38Z) - InPO: Inversion Preference Optimization with Reparametrized DDIM for Efficient Diffusion Model Alignment [12.823734370183482]
We introduce DDIM-InPO, an efficient method for direct preference alignment of diffusion models.<n>Our approach conceptualizes diffusion model as a single-step generative model, allowing us to fine-tune the outputs of specific latent variables selectively.<n> Experimental results indicate that our DDIM-InPO achieves state-of-the-art performance with just 400 steps of fine-tuning.
arXiv Detail & Related papers (2025-03-24T08:58:49Z) - Calibrated Multi-Preference Optimization for Aligning Diffusion Models [92.90660301195396]
Calibrated Preference Optimization (CaPO) is a novel method to align text-to-image (T2I) diffusion models.<n>CaPO incorporates the general preference from multiple reward models without human annotated data.<n> Experimental results show that CaPO consistently outperforms prior methods.
arXiv Detail & Related papers (2025-02-04T18:59:23Z) - Refining Alignment Framework for Diffusion Models with Intermediate-Step Preference Ranking [50.325021634589596]
We propose a Tailored Optimization Preference (TailorPO) framework for aligning diffusion models with human preference.<n>Our approach directly ranks intermediate noisy samples based on their step-wise reward, and effectively resolves the gradient direction issues.<n> Experimental results demonstrate that our method significantly improves the model's ability to generate aesthetically pleasing and human-preferred images.
arXiv Detail & Related papers (2025-02-01T16:08:43Z) - Towards Improved Preference Optimization Pipeline: from Data Generation to Budget-Controlled Regularization [14.50339880957898]
We aim to improve the preference optimization pipeline by taking a closer look at preference data generation and training regularization techniques.
For preference data generation, we propose an iterative pairwise ranking mechanism that derives preference ranking of completions using pairwise comparison signals.
For training regularization, we observe that preference optimization tends to achieve better convergence when the LLM predicted likelihood of preferred samples gets slightly reduced.
arXiv Detail & Related papers (2024-11-07T23:03:11Z) - Diffusion Model Alignment Using Direct Preference Optimization [103.2238655827797]
Diffusion-DPO is a method to align diffusion models to human preferences by directly optimizing on human comparison data.
We fine-tune the base model of the state-of-the-art Stable Diffusion XL (SDXL)-1.0 model with Diffusion-DPO.
We also develop a variant that uses AI feedback and has comparable performance to training on human preferences.
arXiv Detail & Related papers (2023-11-21T15:24:05Z) - Adversarial Preference Optimization: Enhancing Your Alignment via RM-LLM Game [31.66896160733569]
We propose an Adversarial Preference Optimization (APO) framework to target more efficient human preference optimization.
We find the proposed adversarial training framework further enhances existing alignment baselines in terms of LLM helpfulness and harmlessness.
arXiv Detail & Related papers (2023-11-14T10:10:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.