FLARE: A Framework for Stellar Flare Forecasting using Stellar Physical Properties and Historical Records
- URL: http://arxiv.org/abs/2502.18218v3
- Date: Thu, 22 May 2025 10:37:00 GMT
- Title: FLARE: A Framework for Stellar Flare Forecasting using Stellar Physical Properties and Historical Records
- Authors: Bingke Zhu, Xiaoxiao Wang, Minghui Jia, Yihan Tao, Xiao Kong, Ali Luo, Yingying Chen, Ming Tang, Jinqiao Wang,
- Abstract summary: We introduce FLARE, the first-of-its-kind model specifically designed for stellar flare forecasting.<n>Our experiments on the publicly available Kepler light curve dataset demonstrate that FLARE achieves superior performance compared to other methods across all evaluation metrics.
- Score: 24.00351327243306
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stellar flare events are critical observational samples for astronomical research; however, recorded flare events remain limited. Stellar flare forecasting can provide additional flare event samples to support research efforts. Despite this potential, no specialized models for stellar flare forecasting have been proposed to date. In this paper, we present extensive experimental evidence demonstrating that both stellar physical properties and historical flare records are valuable inputs for flare forecasting tasks. We then introduce FLARE (Forecasting Light-curve-based Astronomical Records via features Ensemble), the first-of-its-kind large model specifically designed for stellar flare forecasting. FLARE integrates stellar physical properties and historical flare records through a novel Soft Prompt Module and Residual Record Fusion Module. Our experiments on the publicly available Kepler light curve dataset demonstrate that FLARE achieves superior performance compared to other methods across all evaluation metrics. Finally, we validate the forecast capability of our model through a comprehensive case study.
Related papers
- STAR: A Benchmark for Astronomical Star Fields Super-Resolution [51.79340280382437]
We propose STAR, a large-scale astronomical SR dataset containing 54,738 flux-consistent star field image pairs.<n>We propose a Flux-Invariant Super Resolution (FISR) model that could accurately infer the flux-consistent high-resolution images from input photometry.
arXiv Detail & Related papers (2025-07-22T09:28:28Z) - StellarF: A Lora-Adapter Integrated Large Model Framework for Stellar Flare Forecasting with Historical & Statistical Data [3.901857423144103]
This study introduces StellarF (Stellar Flare Forecasting), a novel large model for stellar flare forecasting.<n>At its core, StellarF integrates an flare statistical information module with a historical flare record module, enabling multi-scale pattern recognition from observational data.<n>The proposed prediction paradigm establishes a novel methodological framework for advancing astrophysical research and cross-disciplinary applications.
arXiv Detail & Related papers (2025-07-15T04:59:22Z) - Breaking Silos: Adaptive Model Fusion Unlocks Better Time Series Forecasting [64.45587649141842]
Time-series forecasting plays a critical role in many real-world applications.<n>No single model consistently outperforms others across different test samples, but instead (ii) each model excels in specific cases.<n>We introduce TimeFuse, a framework for collective time-series forecasting with sample-level adaptive fusion of heterogeneous models.
arXiv Detail & Related papers (2025-05-24T00:45:07Z) - CirT: Global Subseasonal-to-Seasonal Forecasting with Geometry-inspired Transformer [47.65152457550307]
We propose the geometric-inspired Circular Transformer (CirT) to model the cyclic characteristic of the graticule.
Experiments on the Earth Reanalysis 5 (ERA5) reanalysis dataset demonstrate our model yields a significant improvement over the advanced data-driven models.
arXiv Detail & Related papers (2025-02-27T04:26:23Z) - Data driven weather forecasts trained and initialised directly from observations [1.44556167750856]
Skilful Machine Learned weather forecasts have challenged our approach to numerical weather prediction.
Data-driven systems have been trained to forecast future weather by learning from long historical records of past weather.
We propose a new approach, training a neural network to predict future weather purely from historical observations.
arXiv Detail & Related papers (2024-07-22T12:23:26Z) - The Scaling Law in Stellar Light Curves [3.090476527764192]
We investigate the scaling law properties that emerge when learning from astronomical time series data using self-supervised techniques.
A self-supervised Transformer model achieves 3-10 times the sample efficiency compared to the state-of-the-art supervised learning model.
Our research lays the groundwork for analyzing stellar light curves by examining them through large-scale auto-regressive generative models.
arXiv Detail & Related papers (2024-05-27T13:31:03Z) - A Foundation Model for the Earth System [82.73624748093333]
We introduce Aurora, a large-scale foundation model for the Earth system trained on over a million hours of diverse data.
Aurora outperforms operational forecasts for air quality, ocean waves, tropical cyclone tracks, and high-resolution weather forecasting at orders of magnitude smaller computational expense than dedicated existing systems.
arXiv Detail & Related papers (2024-05-20T14:45:18Z) - Observation-Guided Meteorological Field Downscaling at Station Scale: A
Benchmark and a New Method [66.80344502790231]
We extend meteorological downscaling to arbitrary scattered station scales and establish a new benchmark and dataset.
Inspired by data assimilation techniques, we integrate observational data into the downscaling process, providing multi-scale observational priors.
Our proposed method outperforms other specially designed baseline models on multiple surface variables.
arXiv Detail & Related papers (2024-01-22T14:02:56Z) - Stellar Spectra Fitting with Amortized Neural Posterior Estimation and
nbi [0.0]
We train an ANPE model for the APOGEE survey and demonstrate its efficacy on both mock and real stellar spectra.
We introduce an effective approach to handling the measurement noise properties inherent in spectral data.
We discuss the utility of an ANPE "model zoo," where models are trained for specific instruments and distributed under the nbi framework.
arXiv Detail & Related papers (2023-12-09T21:30:07Z) - Learning Robust Precipitation Forecaster by Temporal Frame Interpolation [65.5045412005064]
We develop a robust precipitation forecasting model that demonstrates resilience against spatial-temporal discrepancies.
Our approach has led to significant improvements in forecasting precision, culminating in our model securing textit1st place in the transfer learning leaderboard of the textitWeather4cast'23 competition.
arXiv Detail & Related papers (2023-11-30T08:22:08Z) - Lag-Llama: Towards Foundation Models for Probabilistic Time Series
Forecasting [54.04430089029033]
We present Lag-Llama, a general-purpose foundation model for time series forecasting based on a decoder-only transformer architecture.
Lag-Llama is pretrained on a large corpus of diverse time series data from several domains, and demonstrates strong zero-shot generalization capabilities.
When fine-tuned on relatively small fractions of such previously unseen datasets, Lag-Llama achieves state-of-the-art performance.
arXiv Detail & Related papers (2023-10-12T12:29:32Z) - Towards Interpretable Solar Flare Prediction with Attention-based Deep
Neural Networks [1.1624569521079424]
Solar flare prediction is a central problem in space weather forecasting.
We developed an attention-based deep learning model to perform full-disk binary flare predictions.
Our model can learn conspicuous features corresponding to active regions from full-disk magnetogram images.
arXiv Detail & Related papers (2023-09-08T19:21:10Z) - A Novel Application of Conditional Normalizing Flows: Stellar Age
Inference with Gyrochronology [0.0]
We show that a data-driven approach can constrain gyrochronological ages with a precision comparable to other standard techniques.
This work demonstrates the potential of a probabilistic data-driven solution to widen the applicability of gyrochronological stellar dating.
arXiv Detail & Related papers (2023-07-17T18:00:19Z) - OpenSTL: A Comprehensive Benchmark of Spatio-Temporal Predictive
Learning [67.07363529640784]
We propose OpenSTL to categorize prevalent approaches into recurrent-based and recurrent-free models.
We conduct standard evaluations on datasets across various domains, including synthetic moving object trajectory, human motion, driving scenes, traffic flow and forecasting weather.
We find that recurrent-free models achieve a good balance between efficiency and performance than recurrent models.
arXiv Detail & Related papers (2023-06-20T03:02:14Z) - Deep Autoregressive Models with Spectral Attention [74.08846528440024]
We propose a forecasting architecture that combines deep autoregressive models with a Spectral Attention (SA) module.
By characterizing in the spectral domain the embedding of the time series as occurrences of a random process, our method can identify global trends and seasonality patterns.
Two spectral attention models, global and local to the time series, integrate this information within the forecast and perform spectral filtering to remove time series's noise.
arXiv Detail & Related papers (2021-07-13T11:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.