論文の概要: Beyond the convexity assumption: Realistic tabular data generation under quantifier-free real linear constraints
- arxiv url: http://arxiv.org/abs/2502.18237v1
- Date: Tue, 25 Feb 2025 14:20:05 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:43.268053
- Title: Beyond the convexity assumption: Realistic tabular data generation under quantifier-free real linear constraints
- Title(参考訳): 凸性仮定を超えて: 量化子自由実線型制約の下での実数論的表型データ生成
- Authors: Mihaela Cătălina Stoian, Eleonora Giunchiglia,
- Abstract要約: Disjunctive Refinement Layer (DRL) は、データ制限とユーザ定義制約で指定されたバックグラウンド知識のアライメントを強制するために設計されたレイヤである。
DRLは、量子化子のない線形公式のような制約に本質的に準拠するディープラーニングモデルを自動的に作成できる最初の方法である。
- 参考スコア(独自算出の注目度): 4.956977275061968
- License:
- Abstract: Synthetic tabular data generation has traditionally been a challenging problem due to the high complexity of the underlying distributions that characterise this type of data. Despite recent advances in deep generative models (DGMs), existing methods often fail to produce realistic datapoints that are well-aligned with available background knowledge. In this paper, we address this limitation by introducing Disjunctive Refinement Layer (DRL), a novel layer designed to enforce the alignment of generated data with the background knowledge specified in user-defined constraints. DRL is the first method able to automatically make deep learning models inherently compliant with constraints as expressive as quantifier-free linear formulas, which can define non-convex and even disconnected spaces. Our experimental analysis shows that DRL not only guarantees constraint satisfaction but also improves efficacy in downstream tasks. Notably, when applied to DGMs that frequently violate constraints, DRL eliminates violations entirely. Further, it improves performance metrics by up to 21.4% in F1-score and 20.9% in Area Under the ROC Curve, thus demonstrating its practical impact on data generation.
- Abstract(参考訳): 合成表データ生成は、伝統的に、この種のデータを特徴付ける基礎となる分布の複雑さが高いため、難しい問題となっている。
近年のDGM(Deep Generative Model)の進歩にもかかわらず、既存の手法では、利用可能な背景知識と十分に整合した現実的なデータポイントの生成に失敗することが多い。
本稿では,ユーザ定義制約に規定された背景知識と生成されたデータのアライメントを強制する新しいレイヤである Disjunctive Refinement Layer (DRL) を導入することで,この制限に対処する。
DRLは、非凸空間や非連結空間を定義できる量化子のない線形公式のような制約に本質的に準拠する深層学習モデルを自動的に作成できる最初の方法である。
実験により,DRLは制約満足度を保証できるだけでなく,下流タスクの有効性も向上することが示された。
特に、頻繁に制約に違反するDGMに適用されると、DRLは違反を完全に排除する。
さらに、ROC曲線の下でF1スコアで21.4%、エリアで20.9%のパフォーマンス指標を改善し、データ生成に実践的な影響を示す。
関連論文リスト
- Deep Generative Models with Hard Linear Equality Constraints [24.93865980946986]
本稿では,DGMにハード制約を強制し,制約に準拠したデータを生成する確率論的健全なアプローチを提案する。
5つの画像データセットと3つの科学的応用に関する様々なDGMモデルアーキテクチャを用いて実験を行った。
ジェネレーションにおける制約の満足度を保証するだけでなく、各ベンチマークの他のメソッドよりも優れた生成性能をアーカイブしています。
論文 参考訳(メタデータ) (2025-02-08T02:53:32Z) - Tackling Data Corruption in Offline Reinforcement Learning via Sequence Modeling [35.2859997591196]
オフラインの強化学習は、データ駆動意思決定のスケーリングを約束する。
しかし、センサーや人間から収集された現実世界のデータには、しばしばノイズやエラーが含まれている。
我々の研究によると、データセットが制限された場合、先行研究はデータの破損の下では不十分である。
論文 参考訳(メタデータ) (2024-07-05T06:34:32Z) - Low-rank finetuning for LLMs: A fairness perspective [54.13240282850982]
低ランク近似技術は、微調整された大規模言語モデルのデファクトスタンダードとなっている。
本稿では,これらの手法が初期訓練済みデータ分布から微調整データセットのシフトを捉える上での有効性について検討する。
低ランク微調整は好ましくない偏見や有害な振る舞いを必然的に保存することを示す。
論文 参考訳(メタデータ) (2024-05-28T20:43:53Z) - Exploiting T-norms for Deep Learning in Autonomous Driving [60.205021207641174]
自律運転におけるイベント検出のタスクにおいて,メモリ効率のよいtノルムに基づく損失をどうやって定義できるかを示す。
論文 参考訳(メタデータ) (2024-02-17T18:51:21Z) - How Realistic Is Your Synthetic Data? Constraining Deep Generative
Models for Tabular Data [57.97035325253996]
本稿では,制約付き深部生成モデル(C-DGM)をリアルな合成データモデルに変換する方法について述べる。
C-DGMは、制約によって表現される背景知識を活用して、標準知識より優れている。
論文 参考訳(メタデータ) (2024-02-07T13:22:05Z) - Neural Network Approximation for Pessimistic Offline Reinforcement
Learning [17.756108291816908]
一般ニューラルネットワーク近似を用いた悲観的オフラインRLの非漸近的推定誤差を提案する。
その結果, 推定誤差は2つの部分から構成されることがわかった。第1は, 部分的に制御可能な集束率でサンプルサイズに所望の速度で0に収束し, 第2は残留制約が厳密であれば無視可能である。
論文 参考訳(メタデータ) (2023-12-19T05:17:27Z) - Dual Generator Offline Reinforcement Learning [90.05278061564198]
オフラインのRLでは、学習したポリシーをデータに近づき続けることが不可欠である。
実際には、GANベースのオフラインRL法は代替手法と同様に実行されていない。
2つのジェネレータを持つことにより、有効なGANベースのオフラインRL法が実現されるだけでなく、サポート制約を近似することも示している。
論文 参考訳(メタデータ) (2022-11-02T20:25:18Z) - Robust Offline Reinforcement Learning with Gradient Penalty and
Constraint Relaxation [38.95482624075353]
爆発するQ-関数に対処するために,学習値関数に対する勾配ペナルティを導入する。
次に、批判重み付き制約緩和による非最適行動に対する近接性制約を緩和する。
実験結果から,提案手法は方針制約付きオフラインRL法において,最適でない軌道を効果的に制御できることが示唆された。
論文 参考訳(メタデータ) (2022-10-19T11:22:36Z) - Improving Generalization via Uncertainty Driven Perturbations [107.45752065285821]
トレーニングデータポイントの不確実性による摂動について考察する。
損失駆動摂動とは異なり、不確実性誘導摂動は決定境界を越えてはならない。
線形モデルにおいて,UDPがロバスト性マージン決定を達成することが保証されていることを示す。
論文 参考訳(メタデータ) (2022-02-11T16:22:08Z) - Continuous Doubly Constrained Batch Reinforcement Learning [93.23842221189658]
環境とのオンラインインタラクションではなく、固定されたオフラインデータセットのみを使用して効果的なポリシーを学ぶバッチRLのアルゴリズムを提案する。
バッチRLにおける制限されたデータは、トレーニングデータに不十分に表現された状態/動作の値推定に固有の不確実性をもたらす。
この分散を減らすための政策制約と、過度に楽観的な見積もりを妨げる価値制約という2つの簡単な罰則によってこの問題を軽減することを提案する。
論文 参考訳(メタデータ) (2021-02-18T08:54:14Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。