GraphRank Pro+: Advancing Talent Analytics Through Knowledge Graphs and Sentiment-Enhanced Skill Profiling
- URL: http://arxiv.org/abs/2502.18315v1
- Date: Tue, 25 Feb 2025 16:07:40 GMT
- Title: GraphRank Pro+: Advancing Talent Analytics Through Knowledge Graphs and Sentiment-Enhanced Skill Profiling
- Authors: Sirisha Velampalli, Chandrashekar Muniyappa,
- Abstract summary: We propose a revolutionary approach leveraging structured Graphs, Natural Language Processing (NLP), and Deep Learning.<n>By abstracting intricate logic into Graph structures, we transform raw data into a comprehensive Knowledge Graph.<n>This innovative framework enables precise information extraction and sophisticated querying.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The extraction of information from semi-structured text, such as resumes, has long been a challenge due to the diverse formatting styles and subjective content organization. Conventional solutions rely on specialized logic tailored for specific use cases. However, we propose a revolutionary approach leveraging structured Graphs, Natural Language Processing (NLP), and Deep Learning. By abstracting intricate logic into Graph structures, we transform raw data into a comprehensive Knowledge Graph. This innovative framework enables precise information extraction and sophisticated querying. We systematically construct dictionaries assigning skill weights, paving the way for nuanced talent analysis. Our system not only benefits job recruiters and curriculum designers but also empowers job seekers with targeted query-based filtering and ranking capabilities.
Related papers
- Knowledge prompt chaining for semantic modeling [0.0]
We propose a novel automatic semantic modeling framework: Knowledge Prompt Chaining.<n>It canserialize the graph-structured knowledge and inject it into the LLMs properly.<n>Based on experimental results, our method achieves better performance than existing leading techniques.
arXiv Detail & Related papers (2025-01-15T03:00:57Z) - iText2KG: Incremental Knowledge Graphs Construction Using Large Language Models [0.7165255458140439]
iText2KG is a method for incremental, topic-independent Knowledge Graph construction without post-processing.
Our method demonstrates superior performance compared to baseline methods across three scenarios.
arXiv Detail & Related papers (2024-09-05T06:49:14Z) - Can Graph Learning Improve Planning in LLM-based Agents? [61.47027387839096]
Task planning in language agents is emerging as an important research topic alongside the development of large language models (LLMs)
In this paper, we explore graph learning-based methods for task planning, a direction that is to the prevalent focus on prompt design.
Our interest in graph learning stems from a theoretical discovery: the biases of attention and auto-regressive loss impede LLMs' ability to effectively navigate decision-making on graphs.
arXiv Detail & Related papers (2024-05-29T14:26:24Z) - Exploring Large Language Model for Graph Data Understanding in Online
Job Recommendations [63.19448893196642]
We present a novel framework that harnesses the rich contextual information and semantic representations provided by large language models to analyze behavior graphs.
By leveraging this capability, our framework enables personalized and accurate job recommendations for individual users.
arXiv Detail & Related papers (2023-07-10T11:29:41Z) - Iterative Zero-Shot LLM Prompting for Knowledge Graph Construction [104.29108668347727]
This paper proposes an innovative knowledge graph generation approach that leverages the potential of the latest generative large language models.
The approach is conveyed in a pipeline that comprises novel iterative zero-shot and external knowledge-agnostic strategies.
We claim that our proposal is a suitable solution for scalable and versatile knowledge graph construction and may be applied to different and novel contexts.
arXiv Detail & Related papers (2023-07-03T16:01:45Z) - GPT4Graph: Can Large Language Models Understand Graph Structured Data ?
An Empirical Evaluation and Benchmarking [17.7473474499538]
Large language models like ChatGPT have become indispensable to artificial general intelligence.
In this study, we conduct an investigation to assess the proficiency of LLMs in comprehending graph data.
Our findings contribute valuable insights towards bridging the gap between language models and graph understanding.
arXiv Detail & Related papers (2023-05-24T11:53:19Z) - Exploring In-Context Learning Capabilities of Foundation Models for
Generating Knowledge Graphs from Text [3.114960935006655]
This paper aims to improve the state of the art of automatic construction and completion of knowledge graphs from text.
In this context, one emerging paradigm is in-context learning where a language model is used as it is with a prompt.
arXiv Detail & Related papers (2023-05-15T17:10:19Z) - Joint Language Semantic and Structure Embedding for Knowledge Graph
Completion [66.15933600765835]
We propose to jointly embed the semantics in the natural language description of the knowledge triplets with their structure information.
Our method embeds knowledge graphs for the completion task via fine-tuning pre-trained language models.
Our experiments on a variety of knowledge graph benchmarks have demonstrated the state-of-the-art performance of our method.
arXiv Detail & Related papers (2022-09-19T02:41:02Z) - Entity Context Graph: Learning Entity Representations
fromSemi-Structured Textual Sources on the Web [44.92858943475407]
We propose an approach that processes entity centric textual knowledge sources to learn entity embeddings.
We show that the embeddings learned from our approach are: (i) high quality and comparable to a known knowledge graph-based embeddings and can be used to improve them further.
arXiv Detail & Related papers (2021-03-29T20:52:14Z) - ENT-DESC: Entity Description Generation by Exploring Knowledge Graph [53.03778194567752]
In practice, the input knowledge could be more than enough, since the output description may only cover the most significant knowledge.
We introduce a large-scale and challenging dataset to facilitate the study of such a practical scenario in KG-to-text.
We propose a multi-graph structure that is able to represent the original graph information more comprehensively.
arXiv Detail & Related papers (2020-04-30T14:16:19Z) - Exploiting Structured Knowledge in Text via Graph-Guided Representation
Learning [73.0598186896953]
We present two self-supervised tasks learning over raw text with the guidance from knowledge graphs.
Building upon entity-level masked language models, our first contribution is an entity masking scheme.
In contrast to existing paradigms, our approach uses knowledge graphs implicitly, only during pre-training.
arXiv Detail & Related papers (2020-04-29T14:22:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.