論文の概要: Modeling Neural Activity with Conditionally Linear Dynamical Systems
- arxiv url: http://arxiv.org/abs/2502.18347v1
- Date: Tue, 25 Feb 2025 16:36:24 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-26 15:21:54.838541
- Title: Modeling Neural Activity with Conditionally Linear Dynamical Systems
- Title(参考訳): 条件付き線形力学系を用いたニューラルアクティビティのモデル化
- Authors: Victor Geadah, Amin Nejatbakhsh, David Lipshutz, Jonathan W. Pillow, Alex H. Williams,
- Abstract要約: 本研究では,これらの力学を特徴付ける汎用手法として,条件線形力学系モデルを開発した。
CLDSモデルは,データ制限の厳しいレギュレーションにおいても良好に動作可能であることが判明した。
例えば、方向方向を非線形にエンコードする視床ニューロンのモデル化にCLDSを適用し、キューリーディングタスク中に運動皮質ニューロンをモデル化する。
- 参考スコア(独自算出の注目度): 14.902340082626653
- License:
- Abstract: Neural population activity exhibits complex, nonlinear dynamics, varying in time, over trials, and across experimental conditions. Here, we develop Conditionally Linear Dynamical System (CLDS) models as a general-purpose method to characterize these dynamics. These models use Gaussian Process (GP) priors to capture the nonlinear dependence of circuit dynamics on task and behavioral variables. Conditioned on these covariates, the data is modeled with linear dynamics. This allows for transparent interpretation and tractable Bayesian inference. We find that CLDS models can perform well even in severely data-limited regimes (e.g. one trial per condition) due to their Bayesian formulation and ability to share statistical power across nearby task conditions. In example applications, we apply CLDS to model thalamic neurons that nonlinearly encode heading direction and to model motor cortical neurons during a cued reaching task
- Abstract(参考訳): 神経集団活動は複雑で非線形なダイナミクスを示し、時間によって変化し、試行錯誤し、実験条件を越えて変化する。
そこで我々は,これらの力学を特徴付ける汎用手法として,条件付き線形力学系(CLDS)モデルを開発した。
これらのモデルはガウス過程(GP)を先行して、タスクや振る舞い変数に対する回路力学の非線形依存を捉えている。
これらの共変量に基づいて、データは線形力学でモデル化される。
これにより、透明な解釈と抽出可能なベイズ推論が可能になる。
CLDSモデルはベイズ的定式化と近隣のタスク条件間で統計パワーを共有する能力により,データ制限の厳しい状況下(例えば条件1つ)でも良好に動作できることが判明した。
例えば、方向方向を非線形にエンコードする視床ニューロンのモデル化にCLDSを適用し、キューリーディングタスク中に運動皮質ニューロンをモデル化する。
関連論文リスト
- Hybrid Adaptive Modeling using Neural Networks Trained with Nonlinear Dynamics Based Features [5.652228574188242]
本稿では,非線形動的モデリングから情報を明らかにし,それをデータベースモデルに組み込むことにより,標準手法から逸脱する新しいアプローチを提案する。
摂動法による非線形力学現象を明示的に取り入れることにより、予測能力はブルートフォース数値シミュレーションから得られた知識と比較してより現実的で洞察力が高い。
論文 参考訳(メタデータ) (2025-01-21T02:38:28Z) - Latent Space Energy-based Neural ODEs [73.01344439786524]
本稿では,連続時間列を表現するために設計された新しい深部力学モデルを提案する。
マルコフ連鎖モンテカルロの最大推定値を用いてモデルを訓練する。
振動系, ビデオ, 実世界の状態系列(MuJoCo)の実験結果から, 学習可能なエネルギーベース先行モデルの方が既存のモデルより優れていることが示された。
論文 参考訳(メタデータ) (2024-09-05T18:14:22Z) - Probabilistic Decomposed Linear Dynamical Systems for Robust Discovery of Latent Neural Dynamics [5.841659874892801]
時間変化線形状態空間モデルは、ニューラルネットワークの数学的解釈可能な表現を得るための強力なツールである。
潜在変数推定のための既存の手法は、動的ノイズやシステムの非線形性に対して堅牢ではない。
本稿では,動的雑音に対するロバスト性を改善するために,分解モデルにおける潜在変数推定に対する確率的アプローチを提案する。
論文 参考訳(メタデータ) (2024-08-29T18:58:39Z) - Modeling Latent Neural Dynamics with Gaussian Process Switching Linear Dynamical Systems [2.170477444239546]
ガウス過程スイッチング線形力学系(gpSLDS)の2つの目的をバランスさせるアプローチを開発する。
我々の手法は、非線形力学をガウス過程(GP-SDE)で記述した微分方程式による潜在状態の進化をモデル化した以前の研究に基づいている。
本手法は, 離散状態境界近傍の力学における人工振動など, rSLDS の重要な限界を解消するとともに, 力学の後方不確かさを推定する。
論文 参考訳(メタデータ) (2024-07-19T15:32:15Z) - Latent Dynamical Implicit Diffusion Processes [0.0]
潜在動的暗黙拡散過程(LDIDP)と呼ばれる新しい潜時変動モデルを提案する。
LDIDPは暗黙の拡散過程を利用して動的潜伏過程からサンプリングし、それに従って逐次観測サンプルを生成する。
我々は, LDIDP が潜在次元上の力学を正確に学習できることを実証した。
論文 参考訳(メタデータ) (2023-06-12T12:43:27Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
実験データから未知のパラメータを復元するために、モデルハミルトンのシミュレーションデータを模倣するために訓練されたニューラルネットワークと自動微分を組み合わせた人工知能フレームワークを開発する。
そこで本研究では, 実時間から多次元散乱データに適用可能な微分可能なモデルを1回だけ構築し, 訓練する能力について述べる。
論文 参考訳(メタデータ) (2023-04-08T07:55:36Z) - Neural Abstractions [72.42530499990028]
本稿では,ニューラルネットワークを用いた非線形力学モデルの安全性検証手法を提案する。
提案手法は,既存のベンチマーク非線形モデルにおいて,成熟度の高いFlow*と同等に動作することを示す。
論文 参考訳(メタデータ) (2023-01-27T12:38:09Z) - Stability Preserving Data-driven Models With Latent Dynamics [0.0]
本稿では,潜在変数を用いた動的問題に対するデータ駆動型モデリング手法を提案する。
本稿では,結合力学の安定性を容易に適用できるモデルフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-20T00:41:10Z) - Capturing Actionable Dynamics with Structured Latent Ordinary
Differential Equations [68.62843292346813]
本稿では,その潜在表現内でのシステム入力の変動をキャプチャする構造付き潜在ODEモデルを提案する。
静的変数仕様に基づいて,本モデルではシステムへの入力毎の変動要因を学習し,潜在空間におけるシステム入力の影響を分離する。
論文 参考訳(メタデータ) (2022-02-25T20:00:56Z) - Learning continuous models for continuous physics [94.42705784823997]
本研究では,科学技術応用のための機械学習モデルを検証する数値解析理論に基づくテストを開発する。
本研究は,従来のMLトレーニング/テスト手法と一体化して,科学・工学分野におけるモデルの検証を行う方法である。
論文 参考訳(メタデータ) (2022-02-17T07:56:46Z) - Neural ODE Processes [64.10282200111983]
NDP(Neural ODE Process)は、Neural ODEの分布によって決定される新しいプロセスクラスである。
我々のモデルは,少数のデータポイントから低次元システムのダイナミクスを捉えることができることを示す。
論文 参考訳(メタデータ) (2021-03-23T09:32:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。