LLM-Based Design Pattern Detection
- URL: http://arxiv.org/abs/2502.18458v1
- Date: Tue, 25 Feb 2025 18:57:06 GMT
- Title: LLM-Based Design Pattern Detection
- Authors: Christian Schindler, Andreas Rausch,
- Abstract summary: We present a novel approach leveraging Large Language Models to automatically identify design pattern instances.<n>By providing clearer insights into software structure and intent, this research aims to support developers, improve comprehension, and streamline tasks.
- Score: 0.5586191108738563
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Detecting design pattern instances in unfamiliar codebases remains a challenging yet essential task for improving software quality and maintainability. Traditional static analysis tools often struggle with the complexity, variability, and lack of explicit annotations that characterize real-world pattern implementations. In this paper, we present a novel approach leveraging Large Language Models to automatically identify design pattern instances across diverse codebases. Our method focuses on recognizing the roles classes play within the pattern instances. By providing clearer insights into software structure and intent, this research aims to support developers, improve comprehension, and streamline tasks such as refactoring, maintenance, and adherence to best practices.
Related papers
- Feature-Based vs. GAN-Based Learning from Demonstrations: When and Why [50.191655141020505]
This survey provides a comparative analysis of feature-based and GAN-based approaches to learning from demonstrations.<n>We argue that the dichotomy between feature-based and GAN-based methods is increasingly nuanced.
arXiv Detail & Related papers (2025-07-08T11:45:51Z) - CORE: Benchmarking LLMs Code Reasoning Capabilities through Static Analysis Tasks [12.465309397733249]
Large language models (LLMs) have been widely adopted across diverse software engineering domains.<n>These applications require understanding beyond surface-level code patterns.<n>Existing benchmarks primarily evaluate end-to-end outcomes, such as whether code is correctly repaired or generated.
arXiv Detail & Related papers (2025-07-03T01:35:58Z) - Training Language Models to Generate Quality Code with Program Analysis Feedback [66.0854002147103]
Code generation with large language models (LLMs) is increasingly adopted in production but fails to ensure code quality.<n>We propose REAL, a reinforcement learning framework that incentivizes LLMs to generate production-quality code.
arXiv Detail & Related papers (2025-05-28T17:57:47Z) - Introduction to Analytical Software Engineering Design Paradigm [0.0]
This paper presents Behavioral Software Engineering (ASE), a novel design paradigm aimed at balancing abstraction, tool inadequacy, compatibility, and scalability.<n>The paradigm is evaluated through two frameworks- Structural Sequences (BSS) and Optimized Design Refactoring (ODR)
arXiv Detail & Related papers (2025-05-17T12:23:55Z) - Do Code LLMs Understand Design Patterns? [45.89136944351375]
We empirically investigate the biases of Code LLMs in software development.<n>Our findings reveal that biases in Code LLMs significantly affect the reliability of downstream tasks.
arXiv Detail & Related papers (2025-01-08T20:39:45Z) - Unified Generative and Discriminative Training for Multi-modal Large Language Models [88.84491005030316]
Generative training has enabled Vision-Language Models (VLMs) to tackle various complex tasks.
Discriminative training, exemplified by models like CLIP, excels in zero-shot image-text classification and retrieval.
This paper proposes a unified approach that integrates the strengths of both paradigms.
arXiv Detail & Related papers (2024-11-01T01:51:31Z) - DeepCodeProbe: Towards Understanding What Models Trained on Code Learn [13.135962181354465]
We introduce DeepCodeProbe, a probing approach that examines the syntax and representation learning abilities of ML models.
Our study applies DeepCodeProbe to state-of-the-art models for code clone detection, code summarization, and comment generation.
Findings reveal that while small models capture abstract syntactic representations, their ability to fully grasp programming language syntax is limited.
arXiv Detail & Related papers (2024-07-11T23:16:44Z) - Mining Frequent Structures in Conceptual Models [2.625701175074974]
We propose a general approach to the problem of discovering frequent structures in conceptual models.<n>We implement our approach by focusing on two widely-used conceptual modeling languages.<n>This tool can be used to identify both effective and ineffective modeling practices.
arXiv Detail & Related papers (2024-06-11T10:24:02Z) - Towards Complex Ontology Alignment using Large Language Models [1.3218260503808055]
Ontology alignment is a critical process in Web for detecting relationships between different labels and content.
Recent advancements in Large Language Models (LLMs) presents new opportunities for enhancing engineering practices.
This paper investigates the application of LLM technologies to tackle the complex alignment challenge.
arXiv Detail & Related papers (2024-04-16T07:13:22Z) - A Thorough Examination of Decoding Methods in the Era of LLMs [72.65956436513241]
Decoding methods play an indispensable role in converting language models from next-token predictors into practical task solvers.
This paper provides a comprehensive and multifaceted analysis of various decoding methods within the context of large language models.
Our findings reveal that decoding method performance is notably task-dependent and influenced by factors such as alignment, model size, and quantization.
arXiv Detail & Related papers (2024-02-10T11:14:53Z) - Generalization Properties of Retrieval-based Models [50.35325326050263]
Retrieval-based machine learning methods have enjoyed success on a wide range of problems.
Despite growing literature showcasing the promise of these models, the theoretical underpinning for such models remains underexplored.
We present a formal treatment of retrieval-based models to characterize their generalization ability.
arXiv Detail & Related papers (2022-10-06T00:33:01Z) - Improving Meta-learning for Low-resource Text Classification and
Generation via Memory Imitation [87.98063273826702]
We propose a memory imitation meta-learning (MemIML) method that enhances the model's reliance on support sets for task adaptation.
A theoretical analysis is provided to prove the effectiveness of our method.
arXiv Detail & Related papers (2022-03-22T12:41:55Z) - What Makes Good Contrastive Learning on Small-Scale Wearable-based
Tasks? [59.51457877578138]
We study contrastive learning on the wearable-based activity recognition task.
This paper presents an open-source PyTorch library textttCL-HAR, which can serve as a practical tool for researchers.
arXiv Detail & Related papers (2022-02-12T06:10:15Z) - DirectDebug: Automated Testing and Debugging of Feature Models [55.41644538483948]
Variability models (e.g., feature models) are a common way for the representation of variabilities and commonalities of software artifacts.
Complex and often large-scale feature models can become faulty, i.e., do not represent the expected variability properties of the underlying software artifact.
arXiv Detail & Related papers (2021-02-11T11:22:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.