論文の概要: AI's Impact on Traditional Software Development
- arxiv url: http://arxiv.org/abs/2502.18476v1
- Date: Wed, 05 Feb 2025 14:58:09 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 03:56:15.031057
- Title: AI's Impact on Traditional Software Development
- Title(参考訳): AIが伝統的なソフトウェア開発に与える影響
- Authors: Bhanuprakash Madupati,
- Abstract要約: 人工知能(AI)の応用は、従来の戦術ソフトウェア開発に大きな変化をもたらした。
本稿では,従来のソフトウェア開発ライフサイクル方法論にAIを統合する技術的側面について考察する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: The application of artificial intelligence (AI) has brought key shifts in conventional tactical software development, including code generation, testing and debugging, and deployment. Waterfall and Agile development approaches, which have been used for a long time, also widely employ manual and well-planned steps. However, with the help of automated tools and models such as OpenAI Codex and GPT-4, many aspects of the Software Development Life Cycle (SDLC) have been made possible. This paper examines the technical aspect of integrating AI into prior traditional software development life cycle methodologies, emphasizing code automation, intelligent testing frameworks, AI-based debugging, and continuous integration and deployment pipelines. The analysis is also based on the advantages of utilizing AI for optimizations in efficiency, accuracy, and development speed alongside issues like over-dependence on AI, ethical questions, and technical constraints. Based on the case and example given in this paper, it is clearly shown that the self-improvement of AI in software development makes the process more dynamic, autonomous, and optimized.
- Abstract(参考訳): 人工知能(AI)の応用は、コード生成、テストとデバッグ、デプロイメントなど、従来の戦術ソフトウェア開発に大きな変化をもたらした。
ウォーターフォールとアジャイル開発アプローチは、長い間使われてきたが、手動とよく計画されたステップも広く採用している。
しかし、OpenAI CodexやGPT-4といった自動化ツールやモデルによって、ソフトウェア開発ライフサイクル(SDLC)の多くの側面が実現された。
本稿では、AIを従来のソフトウェア開発ライフサイクル方法論に統合する技術的側面について検討し、コード自動化、インテリジェントテストフレームワーク、AIベースのデバッグ、継続的インテグレーションとデプロイメントパイプラインを強調した。
この分析は、AIの効率性、正確性、開発速度の最適化にAIを活用する利点と、AIへの過度な依存、倫理的問題、技術的な制約といった問題にも基づいている。
本稿では,ソフトウェア開発におけるAIの自己改善によって,プロセスがよりダイナミックで自律的,最適化されることを示す。
関連論文リスト
- How Developers Interact with AI: A Taxonomy of Human-AI Collaboration in Software Engineering [8.65285948382426]
開発者とAIツール間のインタラクションタイプを分類し,11種類のインタラクションタイプを識別する。
この分類に基づいて、AIインタラクションの最適化、開発者のコントロールの改善、AI支援開発における信頼とユーザビリティの課題への対処に焦点を当てた研究課題を概説する。
論文 参考訳(メタデータ) (2025-01-15T12:53:49Z) - Next-Gen Software Engineering. Big Models for AI-Augmented Model-Driven Software Engineering [0.0]
本稿は、AIに強化されたソフトウェア工学の現状の概要を提供し、対応する分類学であるAI4SEを開発する。
SEにおけるAI支援ビッグデータのビジョンは、ソフトウェア開発の文脈において両方のアプローチに固有の利点を活かすことを目的としている。
論文 参考訳(メタデータ) (2024-09-26T16:49:57Z) - "I Don't Use AI for Everything": Exploring Utility, Attitude, and Responsibility of AI-empowered Tools in Software Development [19.851794567529286]
本研究では、ソフトウェア開発プロセスにおけるAIを活用したツールの採用、影響、およびセキュリティに関する考察を行う。
ソフトウェア開発のさまざまな段階において,AIツールが広く採用されていることが判明した。
論文 参考訳(メタデータ) (2024-09-20T09:17:10Z) - Future of Artificial Intelligence in Agile Software Development [0.0]
AIは、LLM、GenAIモデル、AIエージェントを活用することで、ソフトウェア開発マネージャ、ソフトウェアテスタ、その他のチームメンバーを支援することができる。
AIは効率を高め、プロジェクト管理チームが直面するリスクを軽減する可能性がある。
論文 参考訳(メタデータ) (2024-08-01T16:49:50Z) - Exploring the intersection of Generative AI and Software Development [0.0]
生成AIとソフトウェアエンジニアリングの相乗効果は、変革的なフロンティアとして現れます。
このホワイトペーパーは、探索されていない領域に展開し、生成的AI技術がソフトウェア開発にどのように革命をもたらすかを解明する。
これはステークホルダーのためのガイドとして機能し、ソフトウェア工学における生成AIの適用に関する議論と実験を促している。
論文 参考訳(メタデータ) (2023-12-21T19:23:23Z) - Enabling Automated Machine Learning for Model-Driven AI Engineering [60.09869520679979]
モデル駆動型ソフトウェアエンジニアリングとモデル駆動型AIエンジニアリングを実現するための新しいアプローチを提案する。
特に、私たちはAutomated MLをサポートし、AI集約システムの開発において、AIの深い知識のないソフトウェアエンジニアを支援します。
論文 参考訳(メタデータ) (2022-03-06T10:12:56Z) - Data-Driven and SE-assisted AI Model Signal-Awareness Enhancement and
Introspection [61.571331422347875]
モデルの信号認識性を高めるためのデータ駆動型手法を提案する。
コード複雑性のSE概念とカリキュラム学習のAIテクニックを組み合わせる。
モデル信号認識における最大4.8倍の改善を実現している。
論文 参考訳(メタデータ) (2021-11-10T17:58:18Z) - Empowered and Embedded: Ethics and Agile Processes [60.63670249088117]
私たちは倫理的考慮事項を(アジャイル)ソフトウェア開発プロセスに組み込む必要があると論じています。
私たちは、すでに存在しており、確立されたアジャイルソフトウェア開発プロセスで倫理的な議論を実施する可能性を強調しました。
論文 参考訳(メタデータ) (2021-07-15T11:14:03Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - AI-based Modeling and Data-driven Evaluation for Smart Manufacturing
Processes [56.65379135797867]
本稿では,半導体製造プロセスに関する有用な知見を得るための動的アルゴリズムを提案する。
本稿では,遺伝的アルゴリズムとニューラルネットワークを利用して,知的特徴選択アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-08-29T14:57:53Z) - Technology Readiness Levels for AI & ML [79.22051549519989]
機械学習システムの開発は、現代的なツールで容易に実行できるが、プロセスは通常急いで、エンドツーエンドで実行される。
エンジニアリングシステムは、高品質で信頼性の高い結果の開発を効率化するために、明確に定義されたプロセスとテスト標準に従います。
我々は、機械学習の開発と展開のための実証されたシステムエンジニアリングアプローチを提案する。
論文 参考訳(メタデータ) (2020-06-21T17:14:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。