論文の概要: CipherFace: A Fully Homomorphic Encryption-Driven Framework for Secure Cloud-Based Facial Recognition
- arxiv url: http://arxiv.org/abs/2502.18514v1
- Date: Sat, 22 Feb 2025 19:03:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:59:26.830203
- Title: CipherFace: A Fully Homomorphic Encryption-Driven Framework for Secure Cloud-Based Facial Recognition
- Title(参考訳): CipherFace: クラウドベースの顔認識のための、完全同型暗号化駆動フレームワーク
- Authors: Sefik Serengil, Alper Ozpinar,
- Abstract要約: 本稿では,セキュアなクラウドベース顔認識のための同型暗号化駆動フレームワークであるCipherFaceを紹介する。
FHEを活用することで、CipherFaceは、効率的な距離計算のためにクラウドを活用しながら、埋め込みのプライバシを保証する。
本稿では,暗号化されたデータに対して,セキュアな類似性計算を行う上で重要な課題に対処する,ユークリッドとコサインの双方に対する新しい暗号化距離計算手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Facial recognition systems rely on embeddings to represent facial images and determine identity by verifying if the distance between embeddings is below a pre-tuned threshold. While embeddings are not reversible to original images, they still contain sensitive information, making their security critical. Traditional encryption methods like AES are limited in securely utilizing cloud computational power for distance calculations. Homomorphic Encryption, allowing calculations on encrypted data, offers a robust alternative. This paper introduces CipherFace, a homomorphic encryption-driven framework for secure cloud-based facial recognition, which we have open-sourced at http://github.com/serengil/cipherface. By leveraging FHE, CipherFace ensures the privacy of embeddings while utilizing the cloud for efficient distance computation. Furthermore, we propose a novel encrypted distance computation method for both Euclidean and Cosine distances, addressing key challenges in performing secure similarity calculations on encrypted data. We also conducted experiments with different facial recognition models, various embedding sizes, and cryptosystem configurations, demonstrating the scalability and effectiveness of CipherFace in real-world applications.
- Abstract(参考訳): 顔認識システムは、顔画像を表すために埋め込みに依存し、埋め込み間の距離が予め調整された閾値以下であるかどうかを検証することによってアイデンティティを決定する。
埋め込みは元のイメージに逆らうものではないが、それでも機密情報を含んでいるため、セキュリティが重要になる。
AESのような従来の暗号化手法は、遠隔計算にクラウド計算パワーを安全に活用するために制限されている。
暗号化データの計算を可能にするホモモルフィック暗号化は、堅牢な代替手段を提供する。
本稿では、セキュアなクラウドベースの顔認識のための同型暗号化駆動フレームワークであるCipherFaceを紹介し、http://github.com/serengil/cipherface.comでオープンソース化した。
FHEを活用することで、CipherFaceは、効率的な距離計算のためにクラウドを活用しながら、埋め込みのプライバシを保証する。
さらに,EuclideanとCosineの両距離の暗号化距離計算手法を提案する。
また、さまざまな顔認識モデル、様々な埋め込みサイズ、暗号システム構成を用いて実験を行い、現実世界のアプリケーションにおけるCipherFaceのスケーラビリティと有効性を実証した。
関連論文リスト
- Secure Semantic Communication With Homomorphic Encryption [52.5344514499035]
本稿では,SemCom に準同型暗号を適用する可能性について検討する。
タスク指向のSemComスキームを提案する。
論文 参考訳(メタデータ) (2025-01-17T13:26:14Z) - Gradient-based facial encoding for key generation to encrypt and decrypt multimedia data [0.873811641236639]
パスワードに依存するセキュリティシステムは、忘れられたり、推測されたり、違反されたりすることに対して脆弱である。
本稿では,これらの問題に対処するために顔認識技術を利用したバイオ暗号システムを提案する。
提案システムは、顔の特徴から派生した32ビットの暗号鍵を作成する。
論文 参考訳(メタデータ) (2024-12-09T19:12:17Z) - Encrypted system identification as-a-service via reliable encrypted matrix inversion [0.0]
暗号化された計算は、多数のアプリケーションドメインにわたる有望な道を開く。
特に、算術的同型暗号化はクラウドベースの計算サービスに自然に適合する。
本稿では,少なくとも2乗問題に対する信頼性の高い暗号化ソリューションにより,暗号化されたシステム識別サービスを提案する。
論文 参考訳(メタデータ) (2024-10-27T20:00:04Z) - Enabling Practical and Privacy-Preserving Image Processing [5.526464269029825]
ホモモルフィック暗号化(FHE)は、暗号化されたデータの計算を可能にし、復号化を必要とせずに機密性を保存する。
従来のFHEメソッドは、ピクセルの代わりにモノリシックなデータブロックで画像を暗号化することが多い。
CKKS方式に基づく画素レベルの同型暗号化手法iCHEETAHを提案し,実装する。
論文 参考訳(メタデータ) (2024-09-05T14:22:02Z) - Privacy-preserving Optics for Enhancing Protection in Face De-identification [60.110274007388135]
この脆弱性を解決するために,ハードウェアレベルの顔識別手法を提案する。
また、プライバシ保存画像、フェイスヒートマップ、およびパブリックデータセットからの参照顔イメージを入力として、新しい顔を生成する匿名化フレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-31T19:28:04Z) - PRO-Face S: Privacy-preserving Reversible Obfuscation of Face Images via
Secure Flow [69.78820726573935]
保護フローベースモデルを用いて,プライバシ保護による顔画像の可逆難読化(Reversible Obfuscation of Face image)を略してpro-Face Sと命名する。
本フレームワークでは、Invertible Neural Network(INN)を使用して、入力画像と、その事前難読化されたフォームとを処理し、事前難読化された画像と視覚的に近似したプライバシー保護された画像を生成する。
論文 参考訳(メタデータ) (2023-07-18T10:55:54Z) - RiDDLE: Reversible and Diversified De-identification with Latent
Encryptor [57.66174700276893]
本研究は、Reversible and Diversified De-identification with Latent Encryptorの略であるRiDDLEを提示する。
事前に学習したStyleGAN2ジェネレータ上に構築されたRiDDLEは、潜伏空間内の顔のアイデンティティを暗号化して復号する。
論文 参考訳(メタデータ) (2023-03-09T11:03:52Z) - Verifiable Encodings for Secure Homomorphic Analytics [10.402772462535884]
ホモモルフィック暗号化は、機密データ上のクラウドで除算された計算のプライバシを保護するための有望なソリューションである。
本稿では,クラウドベースの同型計算のクライアント検証を実現するための2つの誤り検出符号化とビルド認証手法を提案する。
我々は,暗号化されたデータ上で実行されたアウトソース計算の検証システムであるVERITASにソリューションを実装した。
論文 参考訳(メタデータ) (2022-07-28T13:22:21Z) - OPOM: Customized Invisible Cloak towards Face Privacy Protection [58.07786010689529]
我々は、新しいタイプのカスタマイズクロークに基づく技術の観点から、顔のプライバシ保護について検討する。
本研究では,個人固有の(クラスワイドな)ユニバーサルマスクを生成するために,1人1マスク(OPOM)という新しい手法を提案する。
提案手法の有効性を,共通データセットと有名データセットの両方で評価した。
論文 参考訳(メタデータ) (2022-05-24T11:29:37Z) - Speckle-based optical cryptosystem and its application for human face
recognition via deep learning [17.169570487230747]
顔画像は、慎重に保護されるべき敏感な生体データである。
本研究では,高効率なスペックルベースの光暗号システムを提案し,実装した。
提案した暗号システムは幅広い適用性を持ち、セキュリティの高い複雑な情報暗号化と復号化のための新たな道を開く可能性がある。
論文 参考訳(メタデータ) (2022-01-26T07:18:02Z) - Towards Face Encryption by Generating Adversarial Identity Masks [53.82211571716117]
敵の識別マスクを生成するためのターゲットID保護反復法(TIP-IM)を提案する。
TIP-IMは、様々な最先端の顔認識モデルに対して95%以上の保護成功率を提供する。
論文 参考訳(メタデータ) (2020-03-15T12:45:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。