論文の概要: ARACNE: An LLM-Based Autonomous Shell Pentesting Agent
- arxiv url: http://arxiv.org/abs/2502.18528v1
- Date: Mon, 24 Feb 2025 21:16:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 15:24:46.25456
- Title: ARACNE: An LLM-Based Autonomous Shell Pentesting Agent
- Title(参考訳): ARACNE: LLMをベースとした自律シェルペンテスティングエージェント
- Authors: Tomas Nieponice, Veronica Valeros, Sebastian Garcia,
- Abstract要約: SSH サービスに適した完全自律型 LLM 型ペンテスティングエージェント ARACNE について紹介する。
ARACNEは、自律的なディフェンダーShelLMに対して60%の成功率、Over The Wire Bandit CTFに対する57.58%の成功率に達することができる。
- 参考スコア(独自算出の注目度): 0.2867517731896504
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We introduce ARACNE, a fully autonomous LLM-based pentesting agent tailored for SSH services that can execute commands on real Linux shell systems. Introduces a new agent architecture with multi-LLM model support. Experiments show that ARACNE can reach a 60\% success rate against the autonomous defender ShelLM and a 57.58\% success rate against the Over The Wire Bandit CTF challenges, improving over the state-of-the-art. When winning, the average number of actions taken by the agent to accomplish the goals was less than 5. The results show that the use of multi-LLM is a promising approach to increase accuracy in the actions.
- Abstract(参考訳): 実Linuxシェルシステム上でコマンドを実行するSSHサービスに適した,完全に自律的なLLMベースのペンテスティングエージェントであるARACNEを紹介する。
マルチLLMモデルをサポートする新しいエージェントアーキテクチャを導入した。
実験の結果、ARACNEは自律的なディフェンダーShelLMに対して60倍の成功率、Over The Wire Bandit CTFに対する57.58倍の成功率に到達し、最先端技術よりも改善できることが示されている。
勝敗時,目標達成に要するエージェントの平均行動数は5。
その結果、マルチLLMはアクションの精度を高めるための有望なアプローチであることがわかった。
関連論文リスト
- Agentic Reinforced Policy Optimization [66.96989268893932]
検証可能な報酬付き大規模強化学習(RLVR)は,大規模言語モデル(LLM)を単一ターン推論タスクに活用する効果を実証している。
現在のRLアルゴリズムは、モデル固有のロングホライゾン推論能力と、マルチターンツールインタラクションにおけるその習熟性のバランスが不十分である。
エージェント強化ポリシー最適化(ARPO: Agentic Reinforced Policy Optimization)は,マルチターンLDMエージェントを学習するためのエージェントRLアルゴリズムである。
論文 参考訳(メタデータ) (2025-07-26T07:53:11Z) - Symbiotic Agents: A Novel Paradigm for Trustworthy AGI-driven Networks [2.5782420501870296]
大規模言語モデル(LLM)に基づく自律エージェントは、6Gネットワークの進化において重要な役割を果たすことが期待されている。
我々は、LLMのリアルタイム最適化アルゴリズムをTrustworthy AIに組み合わせた新しいエージェントパラダイムを導入する。
本稿では,AGIネットワークのエンドツーエンドアーキテクチャを提案し,移動車からのチャネル変動をキャプチャする5Gテストベッド上で評価する。
論文 参考訳(メタデータ) (2025-07-23T17:01:23Z) - How to Train a Leader: Hierarchical Reasoning in Multi-Agent LLMs [16.853362180877593]
我々は、訓練されていないピアエージェントのチームを調整するために、単一のリーダーLDMのみを訓練する階層的なマルチエージェントフレームワークを導入する。
本結果は,複数エージェントLLMシステムにおける協調推論のための単一柔軟なリーダのトレーニングの有効性と効率性を強調した。
論文 参考訳(メタデータ) (2025-07-11T18:34:07Z) - AegisLLM: Scaling Agentic Systems for Self-Reflective Defense in LLM Security [74.22452069013289]
AegisLLMは、敵の攻撃や情報漏洩に対する協調的なマルチエージェント防御である。
テスト時のエージェント推論システムのスケーリングは,モデルの有用性を損なうことなく,ロバスト性を大幅に向上させることを示す。
アンラーニングやジェイルブレイクを含む主要な脅威シナリオに対する総合的な評価は、AegisLLMの有効性を示している。
論文 参考訳(メタデータ) (2025-04-29T17:36:05Z) - DARS: Dynamic Action Re-Sampling to Enhance Coding Agent Performance by Adaptive Tree Traversal [55.13854171147104]
大規模言語モデル(LLM)は、自然言語処理、データ分析、ソフトウェア開発など、さまざまな領域に革命をもたらした。
符号化エージェントのための新しい推論時間計算スケーリングアプローチである動的アクション再サンプリング(DARS)を提案する。
我々は、SWE-Bench Liteベンチマークに対する我々のアプローチを評価し、このスケーリング戦略がClude 3.5 Sonnet V2で55%のパス@kスコアを達成したことを実証した。
論文 参考訳(メタデータ) (2025-03-18T14:02:59Z) - Mars-PO: Multi-Agent Reasoning System Preference Optimization [16.145823558485393]
大規模言語モデル(LLM)の数学的推論能力を改善するための新しいフレームワークであるMars-POを提案する。
複数のエージェントからの高品質な出力をハイブリッドな正のサンプルセットに組み合わせ、エージェント固有の負のサンプルと組み合わせて、トレーニングのための堅牢な選好ペアを構築する。
個々の弱点に対処しながら、エージェントを共有陽性のサンプルと整列させることで、Mars-POは数学的推論ベンチマークで大幅なパフォーマンス向上を実現している。
論文 参考訳(メタデータ) (2024-11-28T10:35:16Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
本稿では,エージェントの強化学習プロセスの最適化にステップワイド報酬を利用するStepAgentを紹介する。
エージェント反射とポリシー調整を容易にする暗黙の逆・逆の強化学習手法を提案する。
論文 参考訳(メタデータ) (2024-11-06T10:35:11Z) - ADVLLM: Iterative Self-Tuning LLMs for Enhanced Jailbreaking Capabilities [63.603861880022954]
本稿では,対戦型LDMをジェイルブレイク能力に富んだ反復的自己調整プロセスであるADV-LLMを紹介する。
我々のフレームワークは,様々なオープンソース LLM 上で ASR を100% 近く達成しながら,逆接接尾辞を生成する計算コストを大幅に削減する。
Llama3のみに最適化されているにもかかわらず、GPT-3.5では99%のASR、GPT-4では49%のASRを達成している。
論文 参考訳(メタデータ) (2024-10-24T06:36:12Z) - AgentMonitor: A Plug-and-Play Framework for Predictive and Secure Multi-Agent Systems [43.333567687032904]
AgentMonitorはエージェントレベルで統合されたフレームワークで、インプットとアウトプットをキャプチャし、回帰モデルをトレーニングしてタスクのパフォーマンスを予測する統計に変換する。
さらに、悪意のあるエージェントによるセキュリティリスクに対処し、ネガティブな影響を軽減し、MASセキュリティを強化するために、リアルタイムの修正を適用することができる。
論文 参考訳(メタデータ) (2024-08-27T11:24:38Z) - Watch Every Step! LLM Agent Learning via Iterative Step-Level Process Refinement [50.481380478458945]
反復的なステップレベルプロセスリファインメント(IPR)フレームワークは、エージェントトレーニングを強化するためのステップバイステップのガイダンスを提供する。
3つの複雑なエージェントタスクに関する我々の実験は、我々のフレームワークが様々な強力なベースラインより優れていることを示した。
論文 参考訳(メタデータ) (2024-06-17T03:29:13Z) - DS-Agent: Automated Data Science by Empowering Large Language Models with Case-Based Reasoning [56.887047551101574]
大規模言語モデル(LLM)エージェントとケースベース推論(CBR)を利用した新しいフレームワークであるDS-Agentを提案する。
開発段階では、DS-AgentはCBRフレームワークに従い、自動イテレーションパイプラインを構築する。
デプロイメントの段階では、DS-Agentは、シンプルなCBRパラダイムで低リソースのデプロイメントステージを実装し、LCMの基本能力に対する需要を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-27T12:26:07Z) - AgentBench: Evaluating LLMs as Agents [88.45506148281379]
大規模言語モデル(LLM)は、従来のNLPタスクを超えた現実的な実用的ミッションをターゲットとして、ますます賢く自律的になってきています。
我々は,現在8つの異なる環境からなるベンチマークであるAgentBenchを紹介し,LLM-as-Agentの推論と意思決定能力を評価する。
論文 参考訳(メタデータ) (2023-08-07T16:08:11Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。