Convolutional neural networks for mineral prospecting through alteration mapping with remote sensing data
- URL: http://arxiv.org/abs/2502.18533v1
- Date: Tue, 25 Feb 2025 03:45:25 GMT
- Title: Convolutional neural networks for mineral prospecting through alteration mapping with remote sensing data
- Authors: Ehsan Farahbakhsh, Dakshi Goel, Dhiraj Pimparkar, R. Dietmar Muller, Rohitash Chandra,
- Abstract summary: Deep learning models, such as convolutional neural networks (CNNs), have revolutionised remote sensing data analysis.<n>CNNs can detect specific mineralogical changes linked to mineralisation by identifying subtle features in remote sensing data.<n>This study uses CNNs with Landsat 8, Landsat 9, and ASTER data to map alteration zones north of Broken Hill, New South Wales, Australia.
- Score: 0.15833270109954137
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional geological mapping, based on field observations and rock sample analysis, is inefficient for continuous spatial mapping of features like alteration zones. Deep learning models, such as convolutional neural networks (CNNs), have revolutionised remote sensing data analysis by automatically extracting features for classification and regression tasks. CNNs can detect specific mineralogical changes linked to mineralisation by identifying subtle features in remote sensing data. This study uses CNNs with Landsat 8, Landsat 9, and ASTER data to map alteration zones north of Broken Hill, New South Wales, Australia. The model is trained using ground truth data and an automated approach with selective principal component analysis (PCA). We compare CNNs with traditional machine learning models, including k-nearest neighbours, support vector machines, and multilayer perceptron. Results show that ground truth-based training yields more reliable maps, with CNNs slightly outperforming conventional models in capturing spatial patterns. Landsat 9 outperforms Landsat 8 in mapping iron oxide areas using ground truth-trained CNNs, while ASTER data provides the most accurate argillic and propylitic alteration maps. This highlights CNNs' effectiveness in improving geological mapping precision, especially for identifying subtle mineralisation-related alterations.
Related papers
- Application of Tensorized Neural Networks for Cloud Classification [0.0]
Convolutional neural networks (CNNs) have gained widespread usage across various fields such as weather forecasting, computer vision, autonomous driving, and medical image analysis.
However, the practical implementation and commercialization of CNNs in these domains are hindered by challenges related to model sizes, overfitting, and computational time.
We propose a groundbreaking approach that involves tensorizing the dense layers in the CNN to reduce model size and computational time.
arXiv Detail & Related papers (2024-03-21T06:28:22Z) - Data-Driven Target Localization Using Adaptive Radar Processing and Convolutional Neural Networks [18.50309014013637]
This paper presents a data-driven approach to improve radar target localization post adaptive radar detection.
We produce heatmap tensors from the radar returns, in range, azimuth [and Doppler], of the normalized adaptive matched filter (NAMF) test statistic.
We then train a regression convolutional neural network (CNN) to estimate target locations from these heatmap tensors.
arXiv Detail & Related papers (2022-09-07T02:23:40Z) - SAR Despeckling Using Overcomplete Convolutional Networks [53.99620005035804]
despeckling is an important problem in remote sensing as speckle degrades SAR images.
Recent studies show that convolutional neural networks(CNNs) outperform classical despeckling methods.
This study employs an overcomplete CNN architecture to focus on learning low-level features by restricting the receptive field.
We show that the proposed network improves despeckling performance compared to recent despeckling methods on synthetic and real SAR images.
arXiv Detail & Related papers (2022-05-31T15:55:37Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - Lost Vibration Test Data Recovery Using Convolutional Neural Network: A
Case Study [0.0]
This paper proposes a CNN algorithm for the Alamosa Canyon Bridge as a real structure.
Three different CNN models were considered to predict one and two malfunctioned sensors.
The accuracy of the model was increased by adding a convolutional layer.
arXiv Detail & Related papers (2022-04-11T23:24:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Improving Landslide Detection on SAR Data through Deep Learning [0.0]
We use deep-learning convolution neural networks (CNNs) to assess the landslide mapping and classification performances on optical images.
We analyzed the conditions before and after an earthquake that triggered about 8000 coseismic landslides.
CNNs based on the combination of ground range detected (GRD) SAR data reached overall accuracies beyond 94%.
arXiv Detail & Related papers (2021-05-03T12:37:57Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - TELESTO: A Graph Neural Network Model for Anomaly Classification in
Cloud Services [77.454688257702]
Machine learning (ML) and artificial intelligence (AI) are applied on IT system operation and maintenance.
One direction aims at the recognition of re-occurring anomaly types to enable remediation automation.
We propose a method that is invariant to dimensionality changes of given data.
arXiv Detail & Related papers (2021-02-25T14:24:49Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
Fine-tuning the deep convolution neural network(CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task.
We propose RIFLE - a strategy that deepens backpropagation in transfer learning settings.
RIFLE brings meaningful updates to the weights of deep CNN layers and improves low-level feature learning.
arXiv Detail & Related papers (2020-07-07T11:27:43Z) - Localized convolutional neural networks for geospatial wind forecasting [0.0]
Convolutional Neural Networks (CNN) possess positive qualities when it comes to many spatial data.
In this work, we propose localized convolutional neural networks that enable CNNs to learn local features in addition to the global ones.
They can be added to any convolutional layers, easily end-to-end trained, introduce minimal additional complexity, and let CNNs retain most of their benefits to the extent that they are needed.
arXiv Detail & Related papers (2020-05-12T17:14:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.