論文の概要: Diffusion Models for conditional MRI generation
- arxiv url: http://arxiv.org/abs/2502.18620v1
- Date: Tue, 25 Feb 2025 20:08:29 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:59:40.370015
- Title: Diffusion Models for conditional MRI generation
- Title(参考訳): 条件付きMRI生成のための拡散モデル
- Authors: Miguel Herencia García del Castillo, Ricardo Moya Garcia, Manuel Jesús Cerezo Mazón, Ekaitz Arriola Garcia, Pablo Menéndez Fernández-Miranda,
- Abstract要約: 脳磁気共鳴画像(MRI)生成のための潜時拡散モデル(LDM)を提案する。
生成画像の品質を評価するために、Fr'echet Inception Distance(FID)とMulti-Scale Structure similarity Index(MS-SSIM)のメトリクスを使用した。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In this article, we present a Latent Diffusion Model (LDM) for the generation of brain Magnetic Resonance Imaging (MRI), conditioning its generation based on pathology (Healthy, Glioblastoma, Sclerosis, Dementia) and acquisition modality (T1w, T1ce, T2w, Flair, PD). To evaluate the quality of the generated images, the Fr\'echet Inception Distance (FID) and Multi-Scale Structural Similarity Index (MS-SSIM) metrics were employed. The results indicate that the model generates images with a distribution similar to real ones, maintaining a balance between visual fidelity and diversity. Additionally, the model demonstrates extrapolation capability, enabling the generation of configurations that were not present in the training data. The results validate the potential of the model to increase in the number of samples in clinical datasets, balancing underrepresented classes, and evaluating AI models in medicine, contributing to the development of diagnostic tools in radiology without compromising patient privacy.
- Abstract(参考訳): 本稿では,脳MRI(Latent Diffusion Model, LDM)を用いて, 病理(健康, グリオ芽腫, 硬化症, 認知症)と獲得モダリティ(T1w, T1ce, T2w, Flair, PD)に基づく脳磁気共鳴画像(MRI)の生成について述べる。
生成画像の品質を評価するために、Fr'echet Inception Distance(FID)とMulti-Scale Structure similarity Index(MS-SSIM)のメトリクスを使用した。
その結果,モデルが実物と類似した分布の画像を生成し,視覚的忠実度と多様性のバランスを保つことが示唆された。
さらに、モデルは外挿機能を示し、トレーニングデータに存在しない設定の生成を可能にします。
その結果, 臨床データセットのサンプル数の増加, 未表現クラスのバランス, 医学におけるAIモデルの評価が, 患者のプライバシを損なうことなく, 放射線学における診断ツールの開発に寄与する可能性が示唆された。
関連論文リスト
- Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Physics-Informed Latent Diffusion for Multimodal Brain MRI Synthesis [43.82741134285203]
可変数の脳MRIモダリティを合成できる物理インフォームド生成モデルを提案する。
提案手法は遅延拡散モデルと2段階生成過程を利用する。
実験は、見えないMRコントラストを発生させ、身体的可視性を維持するためのこのアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2024-09-20T14:21:34Z) - Cross-conditioned Diffusion Model for Medical Image to Image Translation [22.020931436223204]
医用画像から画像への変換のためのクロスコンディショニング拡散モデル(CDM)を提案する。
まず、目的のモダリティの分布をモデル化するためのモダリティ固有表現モデル(MRM)を提案する。
そして、MDN(Modality-Decoupled Diffusion Network)を設計し、MRMから効率よく効果的に分布を学習する。
論文 参考訳(メタデータ) (2024-09-13T02:48:56Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
変動型オートエンコーダ(VAE)ベースのモデルであるDemoVAEを作成し、人口統計学から fMRI の特徴を推定する。
ユーザが供給する人口動態に基づいて,高品質な合成fMRIデータを生成する。
論文 参考訳(メタデータ) (2024-05-13T17:49:20Z) - VALD-MD: Visual Attribution via Latent Diffusion for Medical Diagnostics [0.0]
医用画像における視覚的属性は、医用画像の診断関連成分を明確にすることを目指している。
本稿では、潜在拡散モデルとドメイン固有大言語モデルを組み合わせた新しい生成的視覚属性手法を提案する。
結果として生じるシステムは、ゼロショット局所化疾患誘導を含む様々な潜在能力を示す。
論文 参考訳(メタデータ) (2024-01-02T19:51:49Z) - Knowledge-based in silico models and dataset for the comparative
evaluation of mammography AI for a range of breast characteristics, lesion
conspicuities and doses [2.9362519537872647]
M-SYNTH(M-SYNTH)は乳腺線維腺の密度分布の異なるコホートのデータセットである。
その結果,乳房密度の増加とともにモデル性能が低下し,体重密度が増大することがわかった。
曝露レベルが低下すると、AIモデルの性能は、乳房型に推奨される推奨投与量よりも低い被曝レベルで達成された最高性能で低下する。
論文 参考訳(メタデータ) (2023-10-27T21:14:30Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
このフレームワークには、飲み込みレベルにおけるディープラーニングモデルと、学習レベルにおける機能ベースの機械学習モデルが含まれている。
これは、生のマルチスワローデータからHRM研究のCC診断を自動的に予測する最初の人工知能モデルである。
論文 参考訳(メタデータ) (2021-06-25T20:09:23Z) - Variational Knowledge Distillation for Disease Classification in Chest
X-Rays [102.04931207504173]
我々は,X線に基づく疾患分類のための新しい確率的推論フレームワークである反復的知識蒸留(VKD)を提案する。
提案手法の有効性を,X線画像とEHRを用いた3つの公開ベンチマークデータセットに示す。
論文 参考訳(メタデータ) (2021-03-19T14:13:56Z) - Modelling the Distribution of 3D Brain MRI using a 2D Slice VAE [66.63629641650572]
本研究では,2次元スライスVAEとガウスモデルを組み合わせた3次元MR脳の体積分布をモデル化する手法を提案する。
また,本研究では,脳解剖学に適合するセグメンテーションの精度を定量的に評価する新たなボリューム評価手法を提案する。
論文 参考訳(メタデータ) (2020-07-09T13:23:15Z) - Lesion Mask-based Simultaneous Synthesis of Anatomic and MolecularMR
Images using a GAN [59.60954255038335]
提案するフレームワークは,ストレッチアウトアップサンプリングモジュール,ブレインアトラスエンコーダ,セグメンテーション一貫性モジュール,マルチスケールラベルワイド識別器から構成される。
実際の臨床データを用いた実験により,提案モデルが最先端の合成法よりも優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2020-06-26T02:50:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。