論文の概要: Knowledge-based in silico models and dataset for the comparative
evaluation of mammography AI for a range of breast characteristics, lesion
conspicuities and doses
- arxiv url: http://arxiv.org/abs/2310.18494v1
- Date: Fri, 27 Oct 2023 21:14:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-31 18:20:41.413700
- Title: Knowledge-based in silico models and dataset for the comparative
evaluation of mammography AI for a range of breast characteristics, lesion
conspicuities and doses
- Title(参考訳): マンモグラフィーAIの比較評価のためのシリコモデルとデータセットの知識に基づく乳房特性、病変の特異性、用量の比較
- Authors: Elena Sizikova, Niloufar Saharkhiz, Diksha Sharma, Miguel Lago,
Berkman Sahiner, Jana G. Delfino, Aldo Badano
- Abstract要約: M-SYNTH(M-SYNTH)は乳腺線維腺の密度分布の異なるコホートのデータセットである。
その結果,乳房密度の増加とともにモデル性能が低下し,体重密度が増大することがわかった。
曝露レベルが低下すると、AIモデルの性能は、乳房型に推奨される推奨投与量よりも低い被曝レベルで達成された最高性能で低下する。
- 参考スコア(独自算出の注目度): 2.9362519537872647
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: To generate evidence regarding the safety and efficacy of artificial
intelligence (AI) enabled medical devices, AI models need to be evaluated on a
diverse population of patient cases, some of which may not be readily
available. We propose an evaluation approach for testing medical imaging AI
models that relies on in silico imaging pipelines in which stochastic digital
models of human anatomy (in object space) with and without pathology are imaged
using a digital replica imaging acquisition system to generate realistic
synthetic image datasets. Here, we release M-SYNTH, a dataset of cohorts with
four breast fibroglandular density distributions imaged at different exposure
levels using Monte Carlo x-ray simulations with the publicly available Virtual
Imaging Clinical Trial for Regulatory Evaluation (VICTRE) toolkit. We utilize
the synthetic dataset to analyze AI model performance and find that model
performance decreases with increasing breast density and increases with higher
mass density, as expected. As exposure levels decrease, AI model performance
drops with the highest performance achieved at exposure levels lower than the
nominal recommended dose for the breast type.
- Abstract(参考訳): ai(artificial intelligence, ai)を有効にした医療機器の安全性と有効性に関するエビデンスを生成するためには、いくつかの患者でaiモデルを評価する必要がある。
本稿では,人間の解剖学の確率的デジタルモデル(対象空間内)をデジタルレプリカ画像取得システムを用いて画像化し,リアルな合成画像データセットを生成する,サイリコ画像パイプラインを用いた医用画像AIモデルの評価手法を提案する。
そこで我々は,モンテカルロX線シミュレーションとVICTRE(Virtual Imaging Clinical Trial for Regulatory Evaluation)ツールキットを用いて,乳房線維粒度分布の異なる4種類のコホートのデータセットM-SYNTHをリリースした。
合成データセットを用いてAIモデルの性能を解析し,乳房密度の増大とともにモデル性能が低下し,期待どおりの質量密度が増大することを確認した。
曝露レベルが低下すると、AIモデルの性能は、乳房型に推奨される推奨投与量よりも低い被曝レベルで達成された最高性能で低下する。
関連論文リスト
- Towards Virtual Clinical Trials of Radiology AI with Conditional Generative Modeling [10.014130930114172]
本稿では,放射線学AIの仮想臨床試験(VCT)のために設計された条件付き生成AIモデルを紹介する。
画像と解剖学的構造の関節分布を学習することにより,実世界の患者集団の正確な再現を可能にした。
我々は,合成CTを用いたVCTを用いた放射線学AIモデルの有意義な評価を行った。
論文 参考訳(メタデータ) (2025-02-13T15:53:52Z) - Latent Drifting in Diffusion Models for Counterfactual Medical Image Synthesis [55.959002385347645]
大規模なデータセットのトレーニングによるスケーリングは、画像生成の品質と忠実度を高め、拡散モデルによる操作を可能にすることが示されている。
遅延ドリフトにより、医療画像に対して拡散モデルを条件付けし、反ファクト画像生成の複雑なタスクに適合させることができる。
本研究は,異なる微調整方式と組み合わせた場合,様々なシナリオにおいて顕著な性能向上を示すものである。
論文 参考訳(メタデータ) (2024-12-30T01:59:34Z) - Opinion-Unaware Blind Image Quality Assessment using Multi-Scale Deep Feature Statistics [54.08757792080732]
我々は,事前学習された視覚モデルからの深い特徴を統計的解析モデルと統合して,意見認識のないBIQA(OU-BIQA)を実現することを提案する。
提案モデルは,最先端のBIQAモデルと比較して,人間の視覚的知覚との整合性に優れる。
論文 参考訳(メタデータ) (2024-05-29T06:09:34Z) - DDPM based X-ray Image Synthesizer [0.0]
本稿では, 拡散確率モデル(DDPM)とUNetアーキテクチャを組み合わせたX線画像合成手法を提案する。
本手法では,Kaggleから得られた3000以上の肺炎X線画像を用いて訓練を行った。
その結果, 平均二乗誤差(MSE)が低い実写画像の生成に成功し, 提案手法の有効性が示された。
論文 参考訳(メタデータ) (2024-01-03T04:35:58Z) - MAM-E: Mammographic synthetic image generation with diffusion models [0.21360081064127018]
高品質のフルフィールドデジタルマンモグラフィー生成のための拡散モデルの利用について検討する。
テキストプロンプトによって制御される高品質マンモグラフィ合成のための生成モデルのパイプラインであるMAM-Eを紹介する。
論文 参考訳(メタデータ) (2023-11-16T11:49:49Z) - UAV-Sim: NeRF-based Synthetic Data Generation for UAV-based Perception [62.71374902455154]
ニューラルレンダリングの最近の進歩を利用して、静的および動的ノベルビューUAVベースの画像レンダリングを改善する。
本研究では,主に実データと合成データのハイブリッドセットに基づいて最先端検出モデルが最適化された場合,性能が大幅に向上することを示す。
論文 参考訳(メタデータ) (2023-10-25T00:20:37Z) - Augmenting medical image classifiers with synthetic data from latent
diffusion models [12.077733447347592]
我々は,潜伏拡散モデルが皮膚疾患の画像を生成することを実証した。
我々は,複数の生成戦略を用いて生成した458,920個の合成画像の新しいデータセットを生成し,解析する。
論文 参考訳(メタデータ) (2023-08-23T22:34:49Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - SyntheX: Scaling Up Learning-based X-ray Image Analysis Through In
Silico Experiments [12.019996672009375]
人間のモデルからリアルなシミュレートされた画像を作成することは、大規模なIn situデータ収集の代替となることを示す。
人体モデルからの学習データの合成は、容易にスケールできるので、我々がSyntheXと呼ぶX線画像解析のためのモデル転送パラダイムが、実際のデータ学習モデルよりも優れていることが分かりました。
論文 参考訳(メタデータ) (2022-06-13T13:08:41Z) - Malignancy Prediction and Lesion Identification from Clinical
Dermatological Images [65.1629311281062]
臨床皮膚画像から機械学習に基づく悪性度予測と病変の同定を検討する。
まず, サブタイプや悪性度に関わらず画像に存在するすべての病変を同定し, その悪性度を推定し, 凝集により, 画像レベルの悪性度も生成する。
論文 参考訳(メタデータ) (2021-04-02T20:52:05Z) - Many-to-One Distribution Learning and K-Nearest Neighbor Smoothing for
Thoracic Disease Identification [83.6017225363714]
ディープラーニングは、病気の識別性能を改善するための最も強力なコンピュータ支援診断技術となった。
胸部X線撮影では、大規模データの注釈付けには専門的なドメイン知識が必要で、時間を要する。
本論文では、単一モデルにおける疾患同定性能を改善するために、複数対1の分布学習(MODL)とK-nearest neighbor smoothing(KNNS)手法を提案する。
論文 参考訳(メタデータ) (2021-02-26T02:29:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。