Hybrid Voting-Based Task Assignment in Role-Playing Games
- URL: http://arxiv.org/abs/2502.18690v1
- Date: Tue, 25 Feb 2025 22:58:21 GMT
- Title: Hybrid Voting-Based Task Assignment in Role-Playing Games
- Authors: Daniel Weiner, Raj Korpan,
- Abstract summary: Voting-Based Task Assignment (VBTA) is a framework inspired by human reasoning in task allocation and completion.<n> VBTA efficiently identifies and assigns the most suitable agent to each task.<n>Our method shows promise when generating both unique combat encounters and narratives.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In role-playing games (RPGs), the level of immersion is critical-especially when an in-game agent conveys tasks, hints, or ideas to the player. For an agent to accurately interpret the player's emotional state and contextual nuances, a foundational level of understanding is required, which can be achieved using a Large Language Model (LLM). Maintaining the LLM's focus across multiple context changes, however, necessitates a more robust approach, such as integrating the LLM with a dedicated task allocation model to guide its performance throughout gameplay. In response to this need, we introduce Voting-Based Task Assignment (VBTA), a framework inspired by human reasoning in task allocation and completion. VBTA assigns capability profiles to agents and task descriptions to tasks, then generates a suitability matrix that quantifies the alignment between an agent's abilities and a task's requirements. Leveraging six distinct voting methods, a pre-trained LLM, and integrating conflict-based search (CBS) for path planning, VBTA efficiently identifies and assigns the most suitable agent to each task. While existing approaches focus on generating individual aspects of gameplay, such as single quests, or combat encounters, our method shows promise when generating both unique combat encounters and narratives because of its generalizable nature.
Related papers
- Scaling Autonomous Agents via Automatic Reward Modeling And Planning [52.39395405893965]
Large language models (LLMs) have demonstrated remarkable capabilities across a range of tasks.<n>However, they still struggle with problems requiring multi-step decision-making and environmental feedback.<n>We propose a framework that can automatically learn a reward model from the environment without human annotations.
arXiv Detail & Related papers (2025-02-17T18:49:25Z) - VLABench: A Large-Scale Benchmark for Language-Conditioned Robotics Manipulation with Long-Horizon Reasoning Tasks [100.3234156027118]
We present VLABench, an open-source benchmark for evaluating universal LCM task learning.
VLABench provides 100 carefully designed categories of tasks, with strong randomization in each category of task and a total of 2000+ objects.
The benchmark assesses multiple competencies including understanding of mesh&texture, spatial relationship, semantic instruction, physical laws, knowledge transfer and reasoning.
arXiv Detail & Related papers (2024-12-24T06:03:42Z) - GameVLM: A Decision-making Framework for Robotic Task Planning Based on Visual Language Models and Zero-sum Games [7.5757016008687454]
This paper proposes a multi-agent framework, i.e., GameVLM, to enhance the decision-making process in robotic task planning.
VLM-based decision and expert agents are presented to conduct the task planning. Specifically, decision agents are used to plan the task, and the expert agent is employed to evaluate these task plans. Zero-sum game theory is introduced to resolve inconsistencies among different agents and determine the optimal solution.
arXiv Detail & Related papers (2024-05-22T15:37:28Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Interaction is all You Need? A Study of Robots Ability to Understand and
Execute [0.5439020425819]
We equip robots with the ability to understand and execute complex instructions in coherent dialogs.
We observe that our best configuration outperforms the baseline with a success rate score of 8.85.
We introduce a new task by expanding the EDH task and making predictions about game plans instead of individual actions.
arXiv Detail & Related papers (2023-11-13T08:39:06Z) - Cooperation, Competition, and Maliciousness: LLM-Stakeholders Interactive Negotiation [52.930183136111864]
We propose using scorable negotiation to evaluate Large Language Models (LLMs)
To reach an agreement, agents must have strong arithmetic, inference, exploration, and planning capabilities.
We provide procedures to create new games and increase games' difficulty to have an evolving benchmark.
arXiv Detail & Related papers (2023-09-29T13:33:06Z) - Improving Knowledge Extraction from LLMs for Task Learning through Agent
Analysis [4.055489363682198]
Large language models (LLMs) offer significant promise as a knowledge source for task learning.
Prompt engineering has been shown to be effective for eliciting knowledge from an LLM, but alone it is insufficient for acquiring relevant, situationally grounded knowledge for an embodied agent learning novel tasks.
We describe a cognitive-agent approach, STARS, that extends and complements prompt engineering, mitigating its limitations and thus enabling an agent to acquire new task knowledge matched to its native language capabilities, embodiment, environment, and user preferences.
arXiv Detail & Related papers (2023-06-11T20:50:14Z) - Plan, Eliminate, and Track -- Language Models are Good Teachers for
Embodied Agents [99.17668730578586]
Pre-trained large language models (LLMs) capture procedural knowledge about the world.
Plan, Eliminate, and Track (PET) framework translates a task description into a list of high-level sub-tasks.
PET framework leads to a significant 15% improvement over SOTA for generalization to human goal specifications.
arXiv Detail & Related papers (2023-05-03T20:11:22Z) - LDSA: Learning Dynamic Subtask Assignment in Cooperative Multi-Agent
Reinforcement Learning [122.47938710284784]
We propose a novel framework for learning dynamic subtask assignment (LDSA) in cooperative MARL.
To reasonably assign agents to different subtasks, we propose an ability-based subtask selection strategy.
We show that LDSA learns reasonable and effective subtask assignment for better collaboration.
arXiv Detail & Related papers (2022-05-05T10:46:16Z) - Zero-shot Task Adaptation using Natural Language [43.807555235240365]
We propose a novel setting where an agent is given both a demonstration and a description.
Our approach is able to complete more than 95% of target tasks when using template-based descriptions.
arXiv Detail & Related papers (2021-06-05T21:39:04Z) - Task-specific Objectives of Pre-trained Language Models for Dialogue
Adaptation [79.0866650271659]
Common process of utilizing PrLMs is first pre-training on large-scale general corpora with task-independent LM training objectives, then fine-tuning on task datasets with task-specific training objectives.
We introduce task-specific pre-training on in-domain task-related corpora with task-specific objectives.
This procedure is placed between the original two stages to enhance the model understanding capacity of specific tasks.
arXiv Detail & Related papers (2020-09-10T16:46:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.