GameVLM: A Decision-making Framework for Robotic Task Planning Based on Visual Language Models and Zero-sum Games
- URL: http://arxiv.org/abs/2405.13751v1
- Date: Wed, 22 May 2024 15:37:28 GMT
- Title: GameVLM: A Decision-making Framework for Robotic Task Planning Based on Visual Language Models and Zero-sum Games
- Authors: Aoran Mei, Jianhua Wang, Guo-Niu Zhu, Zhongxue Gan,
- Abstract summary: This paper proposes a multi-agent framework, i.e., GameVLM, to enhance the decision-making process in robotic task planning.
VLM-based decision and expert agents are presented to conduct the task planning. Specifically, decision agents are used to plan the task, and the expert agent is employed to evaluate these task plans. Zero-sum game theory is introduced to resolve inconsistencies among different agents and determine the optimal solution.
- Score: 7.5757016008687454
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With their prominent scene understanding and reasoning capabilities, pre-trained visual-language models (VLMs) such as GPT-4V have attracted increasing attention in robotic task planning. Compared with traditional task planning strategies, VLMs are strong in multimodal information parsing and code generation and show remarkable efficiency. Although VLMs demonstrate great potential in robotic task planning, they suffer from challenges like hallucination, semantic complexity, and limited context. To handle such issues, this paper proposes a multi-agent framework, i.e., GameVLM, to enhance the decision-making process in robotic task planning. In this study, VLM-based decision and expert agents are presented to conduct the task planning. Specifically, decision agents are used to plan the task, and the expert agent is employed to evaluate these task plans. Zero-sum game theory is introduced to resolve inconsistencies among different agents and determine the optimal solution. Experimental results on real robots demonstrate the efficacy of the proposed framework, with an average success rate of 83.3%.
Related papers
- REMAC: Self-Reflective and Self-Evolving Multi-Agent Collaboration for Long-Horizon Robot Manipulation [57.628771707989166]
We propose an adaptive multi-agent planning framework, termed REMAC, that enables efficient, scene-agnostic multi-robot long-horizon task planning and execution.
ReMAC incorporates two key modules: a self-reflection module performing pre-conditions and post-condition checks in the loop to evaluate progress and refine plans, and a self-evolvement module dynamically adapting plans based on scene-specific reasoning.
arXiv Detail & Related papers (2025-03-28T03:51:40Z) - Wonderful Team: Zero-Shot Physical Task Planning with Visual LLMs [0.0]
Wonderful Team is a framework for executing high-level robotic planning in a zero-shot regime.
We show that Wonderful Team's performance on real-world semantic and physical planning tasks often exceeds methods that rely on separate vision systems.
arXiv Detail & Related papers (2024-07-26T21:18:57Z) - WorkArena++: Towards Compositional Planning and Reasoning-based Common Knowledge Work Tasks [85.95607119635102]
Large language models (LLMs) can mimic human-like intelligence.
WorkArena++ is designed to evaluate the planning, problem-solving, logical/arithmetic reasoning, retrieval, and contextual understanding abilities of web agents.
arXiv Detail & Related papers (2024-07-07T07:15:49Z) - VSP: Assessing the dual challenges of perception and reasoning in spatial planning tasks for VLMs [102.36953558562436]
Vision language models (VLMs) are an exciting emerging class of language models (LMs)
One understudied capability inVLMs is visual spatial planning.
Our study introduces a benchmark that evaluates the spatial planning capability in these models in general.
arXiv Detail & Related papers (2024-07-02T00:24:01Z) - DKPROMPT: Domain Knowledge Prompting Vision-Language Models for Open-World Planning [9.31108717722043]
Vision-language models (VLMs) have been applied to robot task planning problems.
DKPROMPT automates VLM prompting using domain knowledge in PDDL for classical planning in open worlds.
arXiv Detail & Related papers (2024-06-25T15:49:47Z) - A Human-Like Reasoning Framework for Multi-Phases Planning Task with Large Language Models [15.874604623294427]
Multi-Phases planning problem involves multiple interconnected stages, such as outlining, information gathering, and planning.
Existing reasoning approaches have struggled to effectively address this complex task.
Our research aims to address this challenge by developing a human-like planning framework for LLM agents.
arXiv Detail & Related papers (2024-05-28T14:13:32Z) - Fine-Tuning Large Vision-Language Models as Decision-Making Agents via Reinforcement Learning [79.38140606606126]
We propose an algorithmic framework that fine-tunes vision-language models (VLMs) with reinforcement learning (RL)
Our framework provides a task description and then prompts the VLM to generate chain-of-thought (CoT) reasoning.
We demonstrate that our proposed framework enhances the decision-making capabilities of VLM agents across various tasks.
arXiv Detail & Related papers (2024-05-16T17:50:19Z) - Probabilistically Correct Language-based Multi-Robot Planning using Conformal Prediction [11.614036749291216]
We introduce a new distributed multi-robot planner called S-ATLAS for Safe plAnning for Teams of Language-instructed AgentS.
We show that the proposed planner can achieve user-specified task success rates, assuming successful plan execution.
We provide comparative experiments against related works showing that our method is significantly more computational efficient and achieves lower help rates.
arXiv Detail & Related papers (2024-02-23T15:02:44Z) - Interactive Planning Using Large Language Models for Partially
Observable Robotics Tasks [54.60571399091711]
Large Language Models (LLMs) have achieved impressive results in creating robotic agents for performing open vocabulary tasks.
We present an interactive planning technique for partially observable tasks using LLMs.
arXiv Detail & Related papers (2023-12-11T22:54:44Z) - TaskBench: Benchmarking Large Language Models for Task Automation [82.2932794189585]
We introduce TaskBench, a framework to evaluate the capability of large language models (LLMs) in task automation.
Specifically, task decomposition, tool selection, and parameter prediction are assessed.
Our approach combines automated construction with rigorous human verification, ensuring high consistency with human evaluation.
arXiv Detail & Related papers (2023-11-30T18:02:44Z) - Robot Task Planning Based on Large Language Model Representing Knowledge
with Directed Graph Structures [2.3698227130544547]
We propose a task planning method that combines human expertise with an LLM and have designed an LLM prompt template, Think_Net_Prompt.
We further propose a method to progressively decompose tasks and generate a task tree to reduce the planning volume for each task.
arXiv Detail & Related papers (2023-06-08T13:10:00Z) - AlphaBlock: Embodied Finetuning for Vision-Language Reasoning in Robot
Manipulation [50.737355245505334]
We propose a novel framework for learning high-level cognitive capabilities in robot manipulation tasks.
The resulting dataset AlphaBlock consists of 35 comprehensive high-level tasks of multi-step text plans and paired observation.
arXiv Detail & Related papers (2023-05-30T09:54:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.