Deep-Bench: Deep Learning Benchmark Dataset for Code Generation
- URL: http://arxiv.org/abs/2502.18726v1
- Date: Wed, 26 Feb 2025 00:43:50 GMT
- Title: Deep-Bench: Deep Learning Benchmark Dataset for Code Generation
- Authors: Alireza Daghighfarsoodeh, Chung-Yu Wang, Hamed Taherkhani, Melika Sepidband, Mohammad Abdollahi, Hadi Hemmati, Hung Viet Pham,
- Abstract summary: DeepBench is a novel benchmark dataset for function-level Deep learning code generation.<n> GPT-4o -- the state-of-the-art LLM -- achieved 31% accuracy on DeepBench, significantly lower than its 60% on DS-1000.<n>DeepBench offers valuable insights into the LLMs' performance and areas for potential improvement in the DL domain.
- Score: 2.897621520197328
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning (DL) has revolutionized areas such as computer vision, natural language processing, and more. However, developing DL systems is challenging due to the complexity of DL workflows. Large Language Models (LLMs), such as GPT, Claude, Llama, Mistral, etc., have emerged as promising tools to assist in DL code generation, offering potential solutions to these challenges. Despite this, existing benchmarks such as DS-1000 are limited, as they primarily focus on small DL code snippets related to pre/post-processing tasks and lack a comprehensive coverage of the full DL pipeline, including different DL phases and input data types. To address this, we introduce DeepBench, a novel benchmark dataset designed for function-level DL code generation. DeepBench categorizes DL problems based on three key aspects: phases such as pre-processing, model construction, and training; tasks, including classification, regression, and recommendation; and input data types such as tabular, image, and text. GPT-4o -- the state-of-the-art LLM -- achieved 31% accuracy on DeepBench, significantly lower than its 60% on DS-1000. We observed similar difficulty for other LLMs (e.g., 28% vs. 54% for Claude, 21% vs. 41% for LLaMA, and 15% vs. 20% for Mistral). This result underscores DeepBench's greater complexity. We also construct a taxonomy of issues and bugs found in LLM-generated DL code, which highlights the distinct challenges that LLMs face when generating DL code compared to general code. Furthermore, our analysis also reveals substantial performance variations across categories, with differences of up to 7% among phases and 37% among tasks. These disparities suggest that DeepBench offers valuable insights into the LLMs' performance and areas for potential improvement in the DL domain.
Related papers
- OpenCodeInstruct: A Large-scale Instruction Tuning Dataset for Code LLMs [62.68905180014956]
We introduce OpenCodeInstruct, the largest open-access instruction tuning dataset, comprising 5 million diverse samples.
Each sample includes a programming question, solution, test cases, execution feedback, and LLM-generated quality assessments.
We fine-tune various base models, including LLaMA and Qwen, across multiple scales (1B+, 3B+, and 7B+) using our dataset.
arXiv Detail & Related papers (2025-04-05T02:52:16Z) - DynaCode: A Dynamic Complexity-Aware Code Benchmark for Evaluating Large Language Models in Code Generation [20.75363011870647]
DynaCode is a dynamic, complexity-aware benchmark for large language models (LLMs)
It evaluates LLMs systematically using a complexity-aware metric, incorporating both code complexity and call-graph structures.
Results on 12 latest LLMs show an average performance drop of 16.8% to 45.7% compared to MBPP+, a static code generation benchmark.
arXiv Detail & Related papers (2025-03-13T15:18:56Z) - Quantizing Large Language Models for Code Generation: A Differentiated Replication [51.85505914274633]
Large Language Models (LLMs) have shown an impressive capability in code generation and, specifically, to automatically implement requirements described in natural language.
LLMs pose significant challenges related to their memory (and, consequently, carbon) footprint.
New frontier for LLM quantization is 4-bit precision, resulting in an average memory footprint reduction of 70%.
arXiv Detail & Related papers (2025-03-10T09:26:08Z) - Fault Localization in Deep Learning-based Software: A System-level Approach [12.546853096298175]
We introduce FL4Deep, a system-level fault localization approach considering the entire Deep Learning development pipeline.
In an evaluation using 100 faulty DL scripts, FL4Deep outperformed four previous approaches in terms of accuracy for three out of six DL-related faults.
arXiv Detail & Related papers (2024-11-12T20:32:36Z) - 60 Data Points are Sufficient to Fine-Tune LLMs for Question-Answering [50.12622877002846]
Large language models (LLMs) encode extensive world knowledge through pre-training on massive datasets, which can be fine-tuned for the question-answering (QA) task.
We categorize supervised fine-tuning (SFT) data based on the extent of knowledge memorized by the pretrained LLMs.
Our experiments show that as few as 60 data points during the SFT stage can activate the knowledge encoded during pre-training, enabling LLMs to perform the QA task.
arXiv Detail & Related papers (2024-09-24T07:38:38Z) - What's Wrong with Your Code Generated by Large Language Models? An Extensive Study [80.18342600996601]
Large language models (LLMs) produce code that is shorter yet more complicated as compared to canonical solutions.
We develop a taxonomy of bugs for incorrect codes that includes three categories and 12 sub-categories, and analyze the root cause for common bug types.
We propose a novel training-free iterative method that introduces self-critique, enabling LLMs to critique and correct their generated code based on bug types and compiler feedback.
arXiv Detail & Related papers (2024-07-08T17:27:17Z) - Applying RLAIF for Code Generation with API-usage in Lightweight LLMs [15.366324461797582]
Reinforcement Learning from AI Feedback (RLAIF) has demonstrated significant potential across various domains.
This paper introduces an RLAIF framework for improving the code generation abilities of lightweight (1B parameters) LLMs.
arXiv Detail & Related papers (2024-06-28T17:16:03Z) - LLM2LLM: Boosting LLMs with Novel Iterative Data Enhancement [79.31084387589968]
Pretrained large language models (LLMs) are currently state-of-the-art for solving the vast majority of natural language processing tasks.
We propose LLM2LLM, a data augmentation strategy that uses a teacher LLM to enhance a small seed dataset.
We achieve improvements up to 24.2% on the GSM8K dataset, 32.6% on CaseHOLD, 32.0% on SNIPS, 52.6% on TREC and 39.8% on SST-2 over regular fine-tuning in the low-data regime.
arXiv Detail & Related papers (2024-03-22T08:57:07Z) - ML-Bench: Evaluating Large Language Models and Agents for Machine Learning Tasks on Repository-Level Code [76.84199699772903]
ML-Bench is a benchmark rooted in real-world programming applications that leverage existing code repositories to perform tasks.
To evaluate both Large Language Models (LLMs) and AI agents, two setups are employed: ML-LLM-Bench for assessing LLMs' text-to-code conversion within a predefined deployment environment, and ML-Agent-Bench for testing autonomous agents in an end-to-end task execution within a Linux sandbox environment.
arXiv Detail & Related papers (2023-11-16T12:03:21Z) - Testing LLMs on Code Generation with Varying Levels of Prompt
Specificity [0.0]
Large language models (LLMs) have demonstrated unparalleled prowess in mimicking human-like text generation and processing.
The potential to transform natural language prompts into executable code promises a major shift in software development practices.
arXiv Detail & Related papers (2023-11-10T23:41:41Z) - LLM-Pruner: On the Structural Pruning of Large Language Models [65.02607075556742]
Large language models (LLMs) have shown remarkable capabilities in language understanding and generation.
We tackle the compression of LLMs within the bound of two constraints: being task-agnostic and minimizing the reliance on the original training dataset.
Our method, named LLM-Pruner, adopts structural pruning that selectively removes non-critical coupled structures.
arXiv Detail & Related papers (2023-05-19T12:10:53Z) - MEMO: Coverage-guided Model Generation For Deep Learning Library Testing [11.263121366956726]
A few techniques have been proposed to test deep learning (DL) libraries by generating DL models as test inputs.
But the test effectiveness of these techniques is constrained by the diversity of generated DL models.
We propose MEMO to efficiently generate diverse DL models by exploring layer types, layer pairs, and layer parameters.
arXiv Detail & Related papers (2022-08-02T14:53:02Z) - Challenges in Migrating Imperative Deep Learning Programs to Graph
Execution: An Empirical Study [4.415977307120617]
We conduct a data-driven analysis of challenges -- and resultant bugs -- involved in writing reliable yet performant imperative DL code.
We put forth several recommendations, best practices, and anti-patterns for effectively hybridizing imperative DL code.
arXiv Detail & Related papers (2022-01-24T21:12:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.