論文の概要: Seeing the Forest for the Trees: A Large Scale, Continuously Updating Meta-Analysis of Frontier LLMs
- arxiv url: http://arxiv.org/abs/2502.18791v1
- Date: Wed, 26 Feb 2025 03:56:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:59:48.632265
- Title: Seeing the Forest for the Trees: A Large Scale, Continuously Updating Meta-Analysis of Frontier LLMs
- Title(参考訳): 樹木の森を見る:フロンティアLLMの大規模連続更新メタ分析
- Authors: Jungsoo Park, Junmo Kang, Gabriel Stanovsky, Alan Ritter,
- Abstract要約: 本研究では,LSMを用いたデータ抽出を高速化する半自動メタ分析手法を提案する。
関連するarXiv論文を自動的に識別し、実験結果と関連する属性を抽出し、構造化データセットに整理する。
- 参考スコア(独自算出の注目度): 32.48924329288906
- License:
- Abstract: The surge of LLM studies makes synthesizing their findings challenging. Meta-analysis can uncover important trends across studies, but its use is limited by the time-consuming nature of manual data extraction. Our study presents a semi-automated approach for meta-analysis that accelerates data extraction using LLMs. It automatically identifies relevant arXiv papers, extracts experimental results and related attributes, and organizes them into a structured dataset. We conduct a comprehensive meta-analysis of frontier LLMs using an automatically extracted dataset, reducing the effort of paper surveying and data extraction by more than 93\% compared to manual approaches. We validate our dataset by showing that it reproduces key findings from a recent manual meta-analysis about Chain-of-Thought (CoT), and also uncovers new insights that go beyond it, showing for example that in-context examples benefit multimodal tasks but offer limited gains in mathematical tasks compared to CoT. Our automatically updatable dataset enables continuous tracking of target models by extracting evaluation studies as new data becomes available. Through our scientific artifacts and empirical analysis, we provide novel insights into LLMs while facilitating ongoing meta-analyses of their behavior.
- Abstract(参考訳): LLM研究の急増は、それらの発見を合成することを困難にしている。
メタ分析は研究全体の重要なトレンドを明らかにすることができるが、その利用は手動データ抽出の時間的特性によって制限される。
本研究では,LSMを用いたデータ抽出を高速化する半自動メタ分析手法を提案する。
関連するarXiv論文を自動的に識別し、実験結果と関連する属性を抽出し、構造化データセットに整理する。
自動抽出データを用いたフロンティアLCMの包括的メタ分析を行い,手動によるアプローチと比較して,紙調査とデータ抽出の労力を93%以上削減した。
我々は、最近のCoT(Chain-of-Thought)に関する手作業によるメタアナリシス(メタアナリシス)から重要な発見を再現することを示すとともに、その先にある新たな洞察を明らかにし、例えば、コンテキスト内サンプルはマルチモーダルなタスクにメリットがあるが、CoTと比較して数学的なタスクにおいて限られた利益をもたらすことを示すことによって、データセットを検証した。
我々の自動更新データセットは、新しいデータが利用可能になると評価研究を抽出し、ターゲットモデルの連続的な追跡を可能にする。
科学的アーティファクトと経験分析を通じて,LLMに関する新たな知見を提供しながら,その行動のメタ分析を促進する。
関連論文リスト
- Large Language Models and Synthetic Data for Monitoring Dataset Mentions in Research Papers [0.0]
本稿では,研究領域間のデータセット参照検出を自動化する機械学習フレームワークを提案する。
我々は,研究論文からゼロショット抽出,品質評価のためのLCM-as-a-Judge,および改良のための推論剤を用いて,弱教師付き合成データセットを生成する。
推論では、ModernBERTベースの分類器がデータセットの参照を効率的にフィルタリングし、高いリコールを維持しながら計算オーバーヘッドを低減する。
論文 参考訳(メタデータ) (2025-02-14T16:16:02Z) - Clear Minds Think Alike: What Makes LLM Fine-tuning Robust? A Study of Token Perplexity [61.48338027901318]
LLM生成データによる微調整により,目標タスク性能が向上し,ドメイン外劣化の低減が図られる。
LLM生成トレーニングデータによって与えられる優れたOODロバスト性について、これが最初の力学的説明である。
論文 参考訳(メタデータ) (2025-01-24T08:18:56Z) - MIMDE: Exploring the Use of Synthetic vs Human Data for Evaluating Multi-Insight Multi-Document Extraction Tasks [0.0]
我々は,Multi-Insight Multi-Document extract (MIMDE)タスクのセットを定義する。
この課題は、調査回答の分析から医療記録の処理に至るまで、多くの実践的応用に欠かせないものである。
そこで本研究では, 合成データの可能性を検討するために, 補完的な人間と合成データセットを新たに導入する。
論文 参考訳(メタデータ) (2024-11-29T13:24:10Z) - Empowering Meta-Analysis: Leveraging Large Language Models for Scientific Synthesis [7.059964549363294]
本研究では,大規模言語モデル(LLM)を用いた科学文献におけるメタアナリシスの自動化について検討する。
ビッグデータ処理と構造化データ抽出の課題に対処するため,LLMを広範囲の科学的データセットに微調整する新たなアプローチを提案する。
論文 参考訳(メタデータ) (2024-11-16T20:18:57Z) - How Do Large Language Models Understand Graph Patterns? A Benchmark for Graph Pattern Comprehension [53.6373473053431]
この研究は、グラフパターンタスクにおける大規模言語モデルの能力を評価するためのベンチマークを導入する。
我々は,LLMが用語的記述と位相的記述の両方に基づいて,グラフパターンを理解できるかどうかを評価するベンチマークを開発した。
私たちのベンチマークでは、合成データセットと実際のデータセットの両方と、11のタスクと7のモデルで構成されています。
論文 参考訳(メタデータ) (2024-10-04T04:48:33Z) - Scaling Up Summarization: Leveraging Large Language Models for Long Text Extractive Summarization [0.27624021966289597]
本稿では,Large Language Models (LLM) を利用した抽出要約フレームワークであるEYEGLAXSを紹介する。
EYEGLAXSは、事実的および文法的整合性を保証するために抽出的な要約に焦点を当てている。
このシステムはPubMedやArXivといった有名なデータセットに新しいパフォーマンスベンチマークを設定する。
論文 参考訳(メタデータ) (2024-08-28T13:52:19Z) - SELF-GUIDE: Better Task-Specific Instruction Following via Self-Synthetic Finetuning [70.21358720599821]
大規模言語モデル(LLM)は、適切な自然言語プロンプトを提供する際に、多様なタスクを解決するという約束を持っている。
学生LLMからタスク固有の入出力ペアを合成する多段階メカニズムであるSELF-GUIDEを提案する。
ベンチマークの指標から,分類タスクに約15%,生成タスクに18%の絶対的な改善を報告した。
論文 参考訳(メタデータ) (2024-07-16T04:41:58Z) - PISTOL: Dataset Compilation Pipeline for Structural Unlearning of LLMs [31.16117964915814]
訓練済みまたは微調整済みのモデルに格納された特定のデータを消去しようとする機械学習は、LLMにとって重要な保護措置として登場した。
構造的アンラーニング手法の開発を容易にするため,マルチシナリオデータセットをコンパイルするパイプラインであるPISTOLを提案する。
Llama2-7BモデルとMistral-7Bモデルの両方で4つの異なる未学習手法を用いてベンチマークを行う。
論文 参考訳(メタデータ) (2024-06-24T17:22:36Z) - AvaTaR: Optimizing LLM Agents for Tool Usage via Contrastive Reasoning [93.96463520716759]
大規模言語モデル(LLM)エージェントは、精度と幻覚を高めるために外部ツールと知識を活用する際、印象的な能力を示した。
本稿では、LLMエージェントを最適化して提供されたツールを効果的に活用し、与えられたタスクのパフォーマンスを向上させる新しい自動化フレームワークであるAvaTaRを紹介する。
論文 参考訳(メタデータ) (2024-06-17T04:20:02Z) - Large Language Models for Data Annotation and Synthesis: A Survey [49.8318827245266]
本調査は,データアノテーションと合成のための大規模言語モデルの有用性に焦点を当てる。
LLMがアノテートできるデータタイプの詳細な分類、LLM生成アノテーションを利用したモデルの学習戦略のレビュー、データアノテーションと合成にLLMを使用する際の主な課題と制限に関する詳細な議論を含む。
論文 参考訳(メタデータ) (2024-02-21T00:44:04Z) - Meta-learning framework with applications to zero-shot time-series
forecasting [82.61728230984099]
この研究は幅広いメタラーニングフレームワークを使って肯定的な証拠を提供する。
残余接続はメタラーニング適応機構として機能する。
我々は、ソースTSデータセット上でニューラルネットワークをトレーニングし、異なるターゲットTSデータセット上で再トレーニングすることなくデプロイできることを示します。
論文 参考訳(メタデータ) (2020-02-07T16:39:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。