BatteryLife: A Comprehensive Dataset and Benchmark for Battery Life Prediction
- URL: http://arxiv.org/abs/2502.18807v2
- Date: Thu, 27 Feb 2025 03:53:57 GMT
- Title: BatteryLife: A Comprehensive Dataset and Benchmark for Battery Life Prediction
- Authors: Ruifeng Tan, Weixiang Hong, Jiayue Tang, Xibin Lu, Ruijun Ma, Xiang Zheng, Jia Li, Jiaqiang Huang, Tong-Yi Zhang,
- Abstract summary: Battery Life Prediction (BLP) relies on time series data produced by battery degradation tests.<n>Despite impressive advancements, this research area faces three key challenges.<n>We propose BatteryLife, a comprehensive dataset and benchmark for BLP.
- Score: 18.442323084350875
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Battery Life Prediction (BLP), which relies on time series data produced by battery degradation tests, is crucial for battery utilization, optimization, and production. Despite impressive advancements, this research area faces three key challenges. Firstly, the limited size of existing datasets impedes insights into modern battery life data. Secondly, most datasets are restricted to small-capacity lithium-ion batteries tested under a narrow range of diversity in labs, raising concerns about the generalizability of findings. Thirdly, inconsistent and limited benchmarks across studies obscure the effectiveness of baselines and leave it unclear if models popular in other time series fields are effective for BLP. To address these challenges, we propose BatteryLife, a comprehensive dataset and benchmark for BLP. BatteryLife integrates 16 datasets, offering a 2.4 times sample size compared to the previous largest dataset, and provides the most diverse battery life resource with batteries from 8 formats, 80 chemical systems, 12 operating temperatures, and 646 charge/discharge protocols, including both laboratory and industrial tests. Notably, BatteryLife is the first to release battery life datasets of zinc-ion batteries, sodium-ion batteries, and industry-tested large-capacity lithium-ion batteries. With the comprehensive dataset, we revisit the effectiveness of baselines popular in this and other time series fields. Furthermore, we propose CyclePatch, a plug-in technique that can be employed in a series of neural networks. Extensive benchmarking of 18 methods reveals that models popular in other time series fields can be unsuitable for BLP, and CyclePatch consistently improves model performance establishing state-of-the-art benchmarks. Moreover, BatteryLife evaluates model performance across aging conditions and domains. BatteryLife is available at https://github.com/Ruifeng-Tan/BatteryLife.
Related papers
- GIFT-Eval: A Benchmark For General Time Series Forecasting Model Evaluation [90.53485251837235]
Time series foundation models excel in zero-shot forecasting, handling diverse tasks without explicit training.
GIFT-Eval is a pioneering benchmark aimed at promoting evaluation across diverse datasets.
GIFT-Eval encompasses 23 datasets over 144,000 time series and 177 million data points.
arXiv Detail & Related papers (2024-10-14T11:29:38Z) - LiveBench: A Challenging, Contamination-Limited LLM Benchmark [93.57775429120488]
We release LiveBench, the first benchmark that contains frequently-updated questions from recent information sources.
We evaluate many prominent closed-source models, as well as dozens of open-source models ranging from 0.5B to 405B in size.
Questions are added and updated on a monthly basis, and we release new tasks and harder versions of tasks over time.
arXiv Detail & Related papers (2024-06-27T16:47:42Z) - BatSort: Enhanced Battery Classification with Transfer Learning for Battery Sorting and Recycling [42.453194049264646]
We introduce a machine learning-based approach for battery-type classification and address the problem of data scarcity for the application.
We propose BatSort which applies transfer learning to utilize the existing knowledge optimized with large-scale datasets.
We conducted an experimental study and the results show that BatSort can achieve outstanding accuracy of 92.1% on average and up to 96.2%.
arXiv Detail & Related papers (2024-04-08T18:05:24Z) - Remaining useful life prediction of Lithium-ion batteries using spatio-temporal multimodal attention networks [4.249657064343807]
Lithium-ion batteries are widely used in various applications, including electric vehicles and renewable energy storage.
The prediction of the remaining useful life (RUL) of batteries is crucial for ensuring reliable and efficient operation.
This paper proposes a two-stage RUL prediction scheme for Lithium-ion batteries using a-temporal attention network (ST-MAN)
arXiv Detail & Related papers (2023-10-29T07:32:32Z) - Accurate battery lifetime prediction across diverse aging conditions
with deep learning [20.832988614576983]
Accurately predicting the lifetime of battery cells in early cycles holds tremendous value for battery research and development as well as numerous downstream applications.
Here we introduce a universal deep learning approach that is capable of accommodating various aging conditions and facilitating effective learning under low-resource conditions.
A benchmark is built for evaluation, encompassing 401 battery cells utilizing 5 prevalent electrode materials across 168 cycling conditions.
arXiv Detail & Related papers (2023-10-08T07:25:27Z) - Prognosis of Multivariate Battery State of Performance and Health via
Transformers [0.0]
Batteries are an essential component in a deeply decarbonized future. Understanding battery performance and "useful life" as a function of design and use is of paramount importance.
We present a first step in that direction via deep transformer networks for the prediction of 28 battery state of health descriptors.
arXiv Detail & Related papers (2023-09-18T15:04:40Z) - Estimation of Remaining Useful Life and SOH of Lithium Ion Batteries
(For EV Vehicles) [0.0]
We present a review of the existing approaches for estimating the remaining useful life of lithium-ion batteries.
We propose a novel approach based on machine learning techniques for accurately predicting the remaining useful life of lithium-ion batteries.
arXiv Detail & Related papers (2023-05-17T15:35:31Z) - A Deep Learning Approach Towards Generating High-fidelity Diverse
Synthetic Battery Datasets [0.0]
We introduce few Deep Learning-based methods to synthesize high-fidelity battery datasets.
These augmented synthetic datasets will help battery researchers build better estimation models.
arXiv Detail & Related papers (2023-04-09T05:41:21Z) - Enhanced Gaussian Process Dynamical Models with Knowledge Transfer for
Long-term Battery Degradation Forecasting [0.9208007322096533]
Predicting the end-of-life or remaining useful life of batteries in electric vehicles is a critical and challenging problem.
A number of algorithms have incorporated features that are available from data collected by battery management systems.
We develop a highly-accurate method that can overcome this limitation.
arXiv Detail & Related papers (2022-12-03T12:59:51Z) - Data Driven Prediction of Battery Cycle Life Before Capacity Degradation [0.0]
This paper utilizes the data and methods implemented by Kristen A. Severson, et al, to explore the methodologies that the research team used.
The fundamental effort is to find out if machine learning techniques may be trained to use early life cycle data in order to accurately predict battery capacity.
arXiv Detail & Related papers (2021-10-19T01:35:12Z) - Overcoming limited battery data challenges: A coupled neural network
approach [0.0]
We propose a novel method of time-series battery data augmentation using deep neural networks.
One model produces battery charging profiles, and another produces battery discharging profiles.
Results show the efficacy of this approach to solve the challenges of limited battery data.
arXiv Detail & Related papers (2021-10-05T16:17:19Z) - Optimizing a domestic battery and solar photovoltaic system with deep
reinforcement learning [69.68068088508505]
A lowering in the cost of batteries and solar PV systems has led to a high uptake of solar battery home systems.
In this work, we use the deep deterministic policy algorithm to optimise the charging and discharging behaviour of a battery within such a system.
arXiv Detail & Related papers (2021-09-10T10:59:14Z) - State-of-Charge Estimation of a Li-Ion Battery using Deep Forward Neural
Networks [68.8204255655161]
We build a Deep Forward Network for a lithium-ion battery and its performance assessment.
The contribution of this work is to present a methodology of building a Deep Forward Network for a lithium-ion battery and its performance assessment.
arXiv Detail & Related papers (2020-09-20T23:47:11Z) - Universal Battery Performance and Degradation Model for Electric
Aircraft [52.77024349608834]
Design, analysis, and operation of electric vertical takeoff and landing aircraft (eVTOLs) requires fast and accurate prediction of Li-ion battery performance.
We generate a battery performance and thermal behavior dataset specific to eVTOL duty cycles.
We use this dataset to develop a battery performance and degradation model (Cellfit) which employs physics-informed machine learning.
arXiv Detail & Related papers (2020-07-06T16:10:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.