論文の概要: Judge as A Judge: Improving the Evaluation of Retrieval-Augmented Generation through the Judge-Consistency of Large Language Models
- arxiv url: http://arxiv.org/abs/2502.18817v1
- Date: Wed, 26 Feb 2025 04:50:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:58:00.676001
- Title: Judge as A Judge: Improving the Evaluation of Retrieval-Augmented Generation through the Judge-Consistency of Large Language Models
- Title(参考訳): 裁判官としての裁判官:大規模言語モデルの判断一貫性による検索強化世代の評価の改善
- Authors: Shuliang Liu, Xinze Li, Zhenghao Liu, Yukun Yan, Cheng Yang, Zheni Zeng, Zhiyuan Liu, Maosong Sun, Ge Yu,
- Abstract要約: Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) に対する幻覚を緩和する効果を証明している。
既存の自動評価メトリクスは、トレーニングと評価の間にRAGモデルによって生成されたアウトプットを正確に評価することはできない。
本稿では,RAGモデルのより正確な評価を実現するため,LCMの強化を目的とした判断一貫性(ConsJudge)手法を提案する。
- 参考スコア(独自算出の注目度): 68.92020689188887
- License:
- Abstract: Retrieval-Augmented Generation (RAG) has proven its effectiveness in alleviating hallucinations for Large Language Models (LLMs). However, existing automated evaluation metrics cannot fairly evaluate the outputs generated by RAG models during training and evaluation. LLM-based judgment models provide the potential to produce high-quality judgments, but they are highly sensitive to evaluation prompts, leading to inconsistencies when judging the output of RAG models. This paper introduces the Judge-Consistency (ConsJudge) method, which aims to enhance LLMs to generate more accurate evaluations for RAG models. Specifically, ConsJudge prompts LLMs to generate different judgments based on various combinations of judgment dimensions, utilize the judge-consistency to evaluate these judgments and select the accepted and rejected judgments for DPO training. Our experiments show that ConsJudge can effectively provide more accurate judgments for optimizing RAG models across various RAG models and datasets. Further analysis reveals that judgments generated by ConsJudge have a high agreement with the superior LLM. All codes are available at https://github.com/OpenBMB/ConsJudge.
- Abstract(参考訳): Retrieval-Augmented Generation (RAG) は、Large Language Models (LLM) に対する幻覚を緩和する効果を証明している。
しかし,既存の自動評価指標では,RAGモデルによるトレーニングと評価の間に発生するアウトプットを十分に評価することはできない。
LLMに基づく判断モデルは、高品質な判断をすることができるが、評価プロンプトに非常に敏感であり、RAGモデルの出力を判断する際の矛盾をもたらす。
本稿では,RAGモデルのより正確な評価を実現するため,LCMの強化を目的とした判断一貫性(ConsJudge)手法を提案する。
特に、ConsJudge は LLM に対して、様々な判断次元の組み合わせに基づいて異なる判断を生成するよう促し、これらの判断を判断一貫性を利用して評価し、DPO トレーニングの受理および拒否された判断を選択する。
実験の結果、ConsJudgeは様々なRAGモデルとデータセットをまたいだRAGモデルを最適化するために、より正確な判断を効果的に提供できることが判明した。
さらに分析した結果,ConsJudge が生成した判断は,上位の LLM と高い一致を示した。
すべてのコードはhttps://github.com/OpenBMB/ConsJudgeで入手できる。
関連論文リスト
- JuStRank: Benchmarking LLM Judges for System Ranking [7.507819077549208]
我々はLLM審査員をシステムランクラーとして大規模に調査した。
システムスコアは、複数のシステム出力に対して判定スコアを集約することで生成される。
我々の分析は、判断力や偏見を含む判断行動のきめ細かい特徴を提供する。
論文 参考訳(メタデータ) (2024-12-12T18:51:13Z) - JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
本稿では,文書関連性を評価する際に,人間の認知過程をエミュレートする新しいエージェント・リランカであるJiceRankを紹介する。
我々は,推論集約型BRIGHTベンチマークを用いて判定Rankを評価し,第1段階の検索手法よりも性能が大幅に向上したことを示す。
さらに、JiceRankは、人気の高いBEIRベンチマークの細調整された最先端リランカと同等に動作し、ゼロショットの一般化能力を検証している。
論文 参考訳(メタデータ) (2024-10-31T18:43:12Z) - JudgeBench: A Benchmark for Evaluating LLM-based Judges [61.048125269475854]
judgeBenchは、知識、推論、数学、コーディングにまたがる挑戦的な応答ペアに関するLSMベースの判断を評価するためのベンチマークである。
審査員、微調整された審査員、マルチエージェントの審査員、報酬モデルに関する包括的な評価は、審査員ベンチが以前のベンチマークよりもかなり大きな課題を課していることを示している。
論文 参考訳(メタデータ) (2024-10-16T17:58:19Z) - Self-rationalization improves LLM as a fine-grained judge [21.917301609125417]
本稿では,判断モデルの合理性を改善する反復的プロセスである自己帰納化を導入する。
自己合理化は、モデルが同じ入力に対して合理性を持つ複数の判断を生成させることで機能する。
我々のモデルは、SFTで訓練されたモデルと比較して平均62%の利益率で、より高い品質の合理性を生み出すことを学習している。
論文 参考訳(メタデータ) (2024-10-07T21:05:53Z) - Direct Judgement Preference Optimization [66.83088028268318]
我々は、他のモデルのアウトプットを評価し、批判するために、生成的判断として大きな言語モデル(LLM)を訓練する。
我々は,異なるユースケースに対する選好ペアの収集に3つのアプローチを採用し,それぞれが異なる視点から生成判断を改善することを目的としている。
提案モデルは,位置や長さの偏りなどの固有バイアスに強く対応し,実践者が指定した評価プロトコルに柔軟に適用し,下流ジェネレータモデルを改善する上で有用な言語フィードバックを提供する。
論文 参考訳(メタデータ) (2024-09-23T02:08:20Z) - RAGEval: Scenario Specific RAG Evaluation Dataset Generation Framework [69.4501863547618]
本稿では,様々なシナリオにまたがってRAGシステムを評価するためのフレームワークであるRAGvalを紹介する。
事実の正確性に着目し, 完全性, 幻覚, 不適切性の3つの新しい指標を提案する。
実験結果から, RAGEvalは, 生成した試料の明瞭度, 安全性, 適合性, 豊かさにおいて, ゼロショット法とワンショット法より優れていた。
論文 参考訳(メタデータ) (2024-08-02T13:35:11Z) - Self-Evaluation Improves Selective Generation in Large Language Models [54.003992911447696]
オープンエンド生成タスクをトークンレベルの予測タスクに再構成する。
我々はLSMに答えを自己評価するように指示する。
自己評価に基づくスコアリング手法をベンチマークする。
論文 参考訳(メタデータ) (2023-12-14T19:09:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。