論文の概要: Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators
- arxiv url: http://arxiv.org/abs/2504.15253v1
- Date: Mon, 21 Apr 2025 17:33:23 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-04-22 12:42:57.031829
- Title: Evaluating Judges as Evaluators: The JETTS Benchmark of LLM-as-Judges as Test-Time Scaling Evaluators
- Title(参考訳): 審査員を評価役として評価する:テストタイムスケーリング評価役としてのLCM-as-JudgesのJETTSベンチマーク
- Authors: Yilun Zhou, Austin Xu, Peifeng Wang, Caiming Xiong, Shafiq Joty,
- Abstract要約: 本稿では,テスト時間スケーリングベンチマークの判定評価について紹介する。
3つのタスク設定の下で、3つのドメイン(推論、コード生成、命令従)での判定性能を評価する。
我々のベンチマークは、審査員が再評価において結果報酬モデルと競合する一方で、ビームサーチにおけるプロセス報酬モデルよりも一貫して悪いことを示している。
- 参考スコア(独自算出の注目度): 66.83088028268318
- License:
- Abstract: Scaling test-time computation, or affording a generator large language model (LLM) extra compute during inference, typically employs the help of external non-generative evaluators (i.e., reward models). Concurrently, LLM-judges, models trained to generate evaluations and critiques (explanations) in natural language, are becoming increasingly popular in automatic evaluation. Despite judge empirical successes, their effectiveness as evaluators in test-time scaling settings is largely unknown. In this paper, we introduce the Judge Evaluation for Test-Time Scaling (JETTS) benchmark, which evaluates judge performance in three domains (math reasoning, code generation, and instruction following) under three task settings: response reranking, step-level beam search, and critique-based response refinement. We evaluate 10 different judge models (7B-70B parameters) for 8 different base generator models (6.7B-72B parameters). Our benchmark shows that while judges are competitive with outcome reward models in reranking, they are consistently worse than process reward models in beam search procedures. Furthermore, though unique to LLM-judges, their natural language critiques are currently ineffective in guiding the generator towards better responses.
- Abstract(参考訳): テストタイムの計算をスケールしたり、推論中にジェネレータ大言語モデル(LLM)に余分な計算を加えることは、通常、外部の非生成的評価器(すなわち報酬モデル)の助けを借りる。
同時に、自然言語による評価や批判(説明)を生成するために訓練された LLM-judges も、自動評価においてますます人気が高まっている。
経験的成功にもかかわらず、テストタイムのスケーリング設定における評価者としての有効性はほとんど不明である。
本稿では,3つの領域(推論,コード生成,命令追従)における判定性能を評価するJETTSベンチマークについて,応答の再評価,ステップレベルビームサーチ,批判に基づく応答改善の3つの課題について紹介する。
我々は,8つの基本生成モデル(6.7B-72Bパラメータ)に対して,10の異なる判定モデル (7B-70Bパラメータ) を評価する。
我々のベンチマークは、審査員が再評価において結果報酬モデルと競合する一方で、ビームサーチにおけるプロセス報酬モデルよりも一貫して悪いことを示している。
さらに、LLM-judgesに特有のものではあるが、彼らの自然言語批判は、ジェネレータをより良い応答へと導くのに効果がない。
関連論文リスト
- JudgeRank: Leveraging Large Language Models for Reasoning-Intensive Reranking [81.88787401178378]
本稿では,文書関連性を評価する際に,人間の認知過程をエミュレートする新しいエージェント・リランカであるJiceRankを紹介する。
我々は,推論集約型BRIGHTベンチマークを用いて判定Rankを評価し,第1段階の検索手法よりも性能が大幅に向上したことを示す。
さらに、JiceRankは、人気の高いBEIRベンチマークの細調整された最先端リランカと同等に動作し、ゼロショットの一般化能力を検証している。
論文 参考訳(メタデータ) (2024-10-31T18:43:12Z) - JudgeBench: A Benchmark for Evaluating LLM-based Judges [61.048125269475854]
judgeBenchは、知識、推論、数学、コーディングにまたがる挑戦的な応答ペアに関するLSMベースの判断を評価するためのベンチマークである。
審査員、微調整された審査員、マルチエージェントの審査員、報酬モデルに関する包括的な評価は、審査員ベンチが以前のベンチマークよりもかなり大きな課題を課していることを示している。
論文 参考訳(メタデータ) (2024-10-16T17:58:19Z) - Direct Judgement Preference Optimization [66.83088028268318]
我々は、他のモデルのアウトプットを評価し、批判するために、生成的判断として大きな言語モデル(LLM)を訓練する。
我々は,異なるユースケースに対する選好ペアの収集に3つのアプローチを採用し,それぞれが異なる視点から生成判断を改善することを目的としている。
提案モデルは,位置や長さの偏りなどの固有バイアスに強く対応し,実践者が指定した評価プロトコルに柔軟に適用し,下流ジェネレータモデルを改善する上で有用な言語フィードバックを提供する。
論文 参考訳(メタデータ) (2024-09-23T02:08:20Z) - From Calculation to Adjudication: Examining LLM judges on Mathematical Reasoning Tasks [11.01213914485374]
数学的推論タスクにおいて,大規模言語モデル (LLM) について検討する。
本分析により,判定性能と候補モデルタスク性能との間に強い相関関係が明らかになった。
本研究では,各モデルのタスク性能などの統計データを用いて,判定性能の予測を行うことが可能であることを示す。
論文 参考訳(メタデータ) (2024-09-06T10:09:41Z) - The BiGGen Bench: A Principled Benchmark for Fine-grained Evaluation of Language Models with Language Models [94.31327813151208]
BiGGen Benchは、77のタスクにわたるLMの9つの異なる能力を徹底的に評価するために設計された、原則化された世代ベンチマークである。
BiGGen Benchの重要な特徴は、インスタンス固有の評価基準の使用であり、人間の評価のニュアンスな識別を忠実に反映している。
論文 参考訳(メタデータ) (2024-06-09T12:30:30Z) - JudgeLM: Fine-tuned Large Language Models are Scalable Judges [48.053949045598344]
大規模言語モデル(LLM)をオープンなシナリオで評価することは、既存のベンチマークやメトリクスがそれらを包括的に測定できないため、難しい。
本稿では,拡張性のある審査員 (JudgeLM) としてLLMを微調整し,LLMを効率よく,かつ効率的に評価する手法を提案する。
我々は7B,13Bから33Bパラメータの異なるスケールでJiceLMを訓練し、その能力と振る舞いを体系的に分析する。
論文 参考訳(メタデータ) (2023-10-26T17:48:58Z) - Benchmarking Cognitive Biases in Large Language Models as Evaluators [16.845939677403287]
大規模言語モデル(LLM)は、簡単なプロンプトと文脈内学習を備えた自動評価器として有効であることが示されている。
我々は,LLMの認知バイアスベンチマークを導入したランキングアウトプットの品質を評価対象として評価する。
LLMはテキスト品質評価器であり、バイアスベンチマークに強い指標を示す。
論文 参考訳(メタデータ) (2023-09-29T06:53:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。