論文の概要: Attention-Guided Integration of CLIP and SAM for Precise Object Masking in Robotic Manipulation
- arxiv url: http://arxiv.org/abs/2502.18842v2
- Date: Fri, 28 Feb 2025 02:20:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-03 13:43:04.329189
- Title: Attention-Guided Integration of CLIP and SAM for Precise Object Masking in Robotic Manipulation
- Title(参考訳): ロボットマニピュレーションにおける精密物体マスキングのためのCLIPとSAMの注意誘導統合
- Authors: Muhammad A. Muttaqien, Tomohiro Motoda, Ryo Hanai, Domae Yukiyasu,
- Abstract要約: 本稿では,コンビニエンスストアにおけるロボット操作のためのオブジェクトマスキングの精度を高めるための新しいパイプラインを提案する。
このアプローチはCLIPとSAMという2つの高度なAIモデルを統合し、シナジスティックな組み合わせとマルチモーダルデータの有効利用に焦点を当てている。
- 参考スコア(独自算出の注目度): 0.6749750044497732
- License:
- Abstract: This paper introduces a novel pipeline to enhance the precision of object masking for robotic manipulation within the specific domain of masking products in convenience stores. The approach integrates two advanced AI models, CLIP and SAM, focusing on their synergistic combination and the effective use of multimodal data (image and text). Emphasis is placed on utilizing gradient-based attention mechanisms and customized datasets to fine-tune performance. While CLIP, SAM, and Grad- CAM are established components, their integration within this structured pipeline represents a significant contribution to the field. The resulting segmented masks, generated through this combined approach, can be effectively utilized as inputs for robotic systems, enabling more precise and adaptive object manipulation in the context of convenience store products.
- Abstract(参考訳): 本稿では,コンビニエンスストアにおけるマスキング製品の特定の領域におけるロボット操作のためのオブジェクトマスキングの精度を高めるための新しいパイプラインを提案する。
このアプローチはCLIPとSAMという2つの高度なAIモデルを統合し、相乗的組み合わせとマルチモーダルデータ(画像とテキスト)の効果的な使用に焦点を当てている。
グラデーションベースのアテンションメカニズムとカスタマイズされたデータセットを活用して、微調整のパフォーマンスを向上させることを重視する。
CLIP、SAM、Grad-CAMは確立されたコンポーネントであるが、この構造化パイプラインへの統合は、この分野への重要な貢献である。
この組み合わせによって生成されたセグメンテッドマスクは、ロボットシステムの入力として有効に利用することができ、コンビニエンスストア製品のコンテキストにおいてより正確で適応的なオブジェクト操作を可能にする。
関連論文リスト
- Towards Fine-grained Interactive Segmentation in Images and Videos [21.22536962888316]
SAM2のバックボーン上に構築されたSAM2Refinerフレームワークを提案する。
このアーキテクチャによりSAM2は、画像とビデオの両方のきめ細かいセグメンテーションマスクを生成することができる。
さらに,マルチスケールのカスケード構造を用いてマスク特徴とエンコーダの階層的表現を融合させることによりマスクリファインメントモジュールを考案した。
論文 参考訳(メタデータ) (2025-02-12T06:38:18Z) - ZISVFM: Zero-Shot Object Instance Segmentation in Indoor Robotic Environments with Vision Foundation Models [10.858627659431928]
サービスロボットは、機能を強化するために、未知のオブジェクトを効果的に認識し、セグメント化する必要がある。
従来の教師付き学習ベースのセグメンテーション技術は、広範な注釈付きデータセットを必要とする。
本稿では,セグメンテーションアプライスモデル (SAM) の強力なゼロショット能力と,自己監督型視覚変換器 (ViT) からの明示的な視覚表現を活用することで,UOISを解く新しいアプローチ (ZISVFM) を提案する。
論文 参考訳(メタデータ) (2025-02-05T15:22:20Z) - ManipGPT: Is Affordance Segmentation by Large Vision Models Enough for Articulated Object Manipulation? [17.356760351203715]
本稿では,調音対象の最適相互作用領域を予測するためのフレームワークであるManipGPTを紹介する。
我々は、シミュレートされた9.9kの画像と実際の画像のデータセットを作成し、シミュレートとリアルのギャップを埋めた。
我々は,ロボット操作のシナリオに対して,モデルのコンテキスト内セグメンテーション機能を適用することにより,部分レベルの割当セグメンテーションを大幅に改善した。
論文 参考訳(メタデータ) (2024-12-13T11:22:01Z) - Adapting Segment Anything Model for Unseen Object Instance Segmentation [70.60171342436092]
Unseen Object Instance(UOIS)は、非構造環境で動作する自律ロボットにとって不可欠である。
UOISタスクのためのデータ効率のよいソリューションであるUOIS-SAMを提案する。
UOIS-SAMは、(i)HeatmapベースのPrompt Generator(HPG)と(ii)SAMのマスクデコーダに適応する階層識別ネットワーク(HDNet)の2つの重要なコンポーネントを統合する。
論文 参考訳(メタデータ) (2024-09-23T19:05:50Z) - LAC-Net: Linear-Fusion Attention-Guided Convolutional Network for Accurate Robotic Grasping Under the Occlusion [79.22197702626542]
本稿では, 乱れ場面におけるロボットグルーピングのためのアモーダルセグメンテーションを探求する枠組みを提案する。
線形融合注意誘導畳み込みネットワーク(LAC-Net)を提案する。
その結果,本手法が最先端の性能を達成できることが示唆された。
論文 参考訳(メタデータ) (2024-08-06T14:50:48Z) - FocSAM: Delving Deeply into Focused Objects in Segmenting Anything [58.042354516491024]
Segment Anything Model (SAM)はセグメンテーションモデルにおいて注目すべきマイルストーンである。
2つの重要な側面に基づいてパイプラインを再設計したFocSAMを提案する。
まず,Dwin-MSA(Dynamic Window Multi-head Self-Attention)を提案する。
次に,Pixel-wise Dynamic ReLU (P-DyReLU)を提案する。
論文 参考訳(メタデータ) (2024-05-29T02:34:13Z) - PosSAM: Panoptic Open-vocabulary Segment Anything [58.72494640363136]
PosSAMはオープン・ボキャブラリ・パノプティ・セグメンテーション・モデルであり、Segment Anything Model(SAM)の強みを、エンドツーエンドのフレームワークで視覚ネイティブのCLIPモデルと統合する。
本稿では,マスクの質を適応的に向上し,各画像の推論中にオープン語彙分類の性能を高めるマスク対応選択組立アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-03-14T17:55:03Z) - SODAR: Segmenting Objects by DynamicallyAggregating Neighboring Mask
Representations [90.8752454643737]
最近の最先端のワンステージインスタンスセグメンテーションモデルSOLOは、入力画像をグリッドに分割し、完全な畳み込みネットワークを備えたグリッドセルオブジェクトマスクを直接予測する。
我々は,SOLOが近傍の格子セルの物体に対して類似したマスクを生成するのを観察する。
観測されたギャップによってモチベーションを得た学習ベースのアグリゲーション手法を開発し,そのリッチな隣り合う情報を活用してSOLOを改善する。
論文 参考訳(メタデータ) (2022-02-15T13:53:03Z) - LevelSet R-CNN: A Deep Variational Method for Instance Segmentation [79.20048372891935]
現在、多くのアートモデルはMask R-CNNフレームワークに基づいている。
本稿では,両世界の長所を結合したR-CNNを提案する。
我々はCOCOおよびCityscapesデータセットに対するアプローチの有効性を示す。
論文 参考訳(メタデータ) (2020-07-30T17:52:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。