論文の概要: ManipGPT: Is Affordance Segmentation by Large Vision Models Enough for Articulated Object Manipulation?
- arxiv url: http://arxiv.org/abs/2412.10050v2
- Date: Wed, 18 Dec 2024 07:08:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:46:04.571793
- Title: ManipGPT: Is Affordance Segmentation by Large Vision Models Enough for Articulated Object Manipulation?
- Title(参考訳): ManipGPT:Articulated Object Manipulationに十分な大視野モデルによる精度分割は可能か?
- Authors: Taewhan Kim, Hojin Bae, Zeming Li, Xiaoqi Li, Iaroslav Ponomarenko, Ruihai Wu, Hao Dong,
- Abstract要約: 本稿では,調音対象の最適相互作用領域を予測するためのフレームワークであるManipGPTを紹介する。
我々は、シミュレートされた9.9kの画像と実際の画像のデータセットを作成し、シミュレートとリアルのギャップを埋めた。
我々は,ロボット操作のシナリオに対して,モデルのコンテキスト内セグメンテーション機能を適用することにより,部分レベルの割当セグメンテーションを大幅に改善した。
- 参考スコア(独自算出の注目度): 17.356760351203715
- License:
- Abstract: Visual actionable affordance has emerged as a transformative approach in robotics, focusing on perceiving interaction areas prior to manipulation. Traditional methods rely on pixel sampling to identify successful interaction samples or processing pointclouds for affordance mapping. However, these approaches are computationally intensive and struggle to adapt to diverse and dynamic environments. This paper introduces ManipGPT, a framework designed to predict optimal interaction areas for articulated objects using a large pre-trained vision transformer (ViT). We created a dataset of 9.9k simulated and real images to bridge the sim-to-real gap and enhance real-world applicability. By fine-tuning the vision transformer on this small dataset, we significantly improved part-level affordance segmentation, adapting the model's in-context segmentation capabilities to robot manipulation scenarios. This enables effective manipulation across simulated and real-world environments by generating part-level affordance masks, paired with an impedance adaptation policy, sufficiently eliminating the need for complex datasets or perception systems.
- Abstract(参考訳): 視覚的行動可能な余裕は、操作前に相互作用領域を認識することに焦点を当てた、ロボット工学における変革的なアプローチとして現れている。
従来の方法では、成功した相互作用サンプルを特定するためにピクセルサンプリングを頼りにしたり、アベイランスマッピングのためにポイントクラウドを処理したりしていた。
しかしながら、これらのアプローチは計算集約的で、多様な動的環境への適応に苦慮している。
本稿では,大規模な事前学習型視覚変換器(ViT)を用いて,音声物体の最適相互作用領域を予測するためのフレームワークであるManipGPTを紹介する。
我々は、シミュレートされた実画像のデータセットを作成し、シミュレートされた現実のギャップを埋め、現実の応用性を高めた。
この小さなデータセットで視覚変換器を微調整することにより、モデルのコンテキスト内セグメンテーション機能をロボット操作シナリオに適用し、部分レベルのアベイランスセグメンテーションを大幅に改善した。
これにより、インピーダンス適応ポリシーと組み合わせて、複雑なデータセットや知覚システムの必要性を十分に排除することで、シミュレーションされた実世界の環境を効果的に操作することができる。
関連論文リスト
- Articulated Object Manipulation using Online Axis Estimation with SAM2-Based Tracking [59.87033229815062]
アーティキュレートされたオブジェクト操作は、オブジェクトの軸を慎重に考慮する必要がある、正確なオブジェクトインタラクションを必要とする。
従来の研究では、対話的な知覚を用いて関節のある物体を操作するが、通常、オープンループのアプローチは相互作用のダイナミクスを見渡すことに悩まされる。
本稿では,対話的知覚と3次元点雲からのオンライン軸推定を統合したクローズドループパイプラインを提案する。
論文 参考訳(メタデータ) (2024-09-24T17:59:56Z) - Polaris: Open-ended Interactive Robotic Manipulation via Syn2Real Visual Grounding and Large Language Models [53.22792173053473]
我々はPolarisという対話型ロボット操作フレームワークを紹介した。
ポラリスはGPT-4と接地された視覚モデルを利用して知覚と相互作用を統合する。
本稿では,Syn2Real(Synthetic-to-Real)ポーズ推定パイプラインを提案する。
論文 参考訳(メタデータ) (2024-08-15T06:40:38Z) - Learning Manipulation by Predicting Interaction [85.57297574510507]
本稿では,インタラクションを予測して操作を学習する一般的な事前学習パイプラインを提案する。
実験の結果,MPIは従来のロボットプラットフォームと比較して10%から64%向上していることがわかった。
論文 参考訳(メタデータ) (2024-06-01T13:28:31Z) - Deep Domain Adaptation: A Sim2Real Neural Approach for Improving Eye-Tracking Systems [80.62854148838359]
眼球画像のセグメンテーションは、最終視線推定に大きな影響を及ぼす眼球追跡の重要なステップである。
対象視線画像と合成訓練データとの重なり合いを測定するために,次元還元法を用いている。
提案手法は,シミュレーションと実世界のデータサンプルの相違に対処する際の頑健で,性能が向上する。
論文 参考訳(メタデータ) (2024-03-23T22:32:06Z) - RISeg: Robot Interactive Object Segmentation via Body Frame-Invariant
Features [6.358423536732677]
本稿では,ロボットインタラクションとデザインされたボディーフレーム不変機能を用いて,不正確なセグメンテーションを補正する新しい手法を提案する。
オブジェクト分割精度を平均80.7%とすることで、散らばったシーンを正確にセグメント化するための対話型知覚パイプラインの有効性を実証する。
論文 参考訳(メタデータ) (2024-03-04T05:03:24Z) - Cross-modal Orthogonal High-rank Augmentation for RGB-Event
Transformer-trackers [58.802352477207094]
本研究では,2つのモード間の分布ギャップを埋めるために,事前学習された視覚変換器(ViT)の潜在可能性を探る。
本研究では,いくつかのトークンの特定のモダリティをランダムにマスキングし,異なるモダリティのトークン間の相互作用を積極的に行うマスクモデリング戦略を提案する。
実験により,我々のプラグアンドプレイトレーニング強化技術は,追跡精度と成功率の両方の観点から,最先端のワンストリームと2つのトラッカーストリームを大幅に向上させることができることが示された。
論文 参考訳(メタデータ) (2023-07-09T08:58:47Z) - Transferring Foundation Models for Generalizable Robotic Manipulation [82.12754319808197]
インターネット規模の基盤モデルによって生成された言語推論セグメンテーションマスクを効果的に活用する新しいパラダイムを提案する。
提案手法は,オブジェクトのポーズを効果的かつ堅牢に知覚し,サンプル効率のよい一般化学習を可能にする。
デモは提出されたビデオで見ることができ、より包括的なデモはlink1またはlink2で見ることができます。
論文 参考訳(メタデータ) (2023-06-09T07:22:12Z) - Learning Sim-to-Real Dense Object Descriptors for Robotic Manipulation [4.7246285569677315]
我々はSim-to-Real Dense Object Nets(SRDONs)という,オブジェクトを適切な表現で理解するだけでなく,シミュレートされた実データをピクセル整合性を持った統一された特徴空間にマップする,高密度オブジェクト記述子を提案する。
本研究では,事前学習したSRDONが実世界の訓練をゼロにした各種ロボット作業において,見えない物体や見えない視覚環境の性能を著しく向上させる実験を行った。
論文 参考訳(メタデータ) (2023-04-18T02:28:55Z) - Unseen Object Instance Segmentation with Fully Test-time RGB-D
Embeddings Adaptation [14.258456366985444]
最近では、大規模な合成データのRGB-D機能を活用し、実世界のシナリオにモデルを適用するのが一般的である。
本稿では,Sim2Realドメイン間の適応プロセスを再強調する。
本稿では,BatchNorm層のパラメータに基づいて,完全テスト時間RGB-D埋め込み適応(FTEA)を行うフレームワークを提案する。
論文 参考訳(メタデータ) (2022-04-21T02:35:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。