論文の概要: Bidirectionalization For The Common People
- arxiv url: http://arxiv.org/abs/2502.18954v1
- Date: Wed, 26 Feb 2025 09:05:13 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:58:45.300808
- Title: Bidirectionalization For The Common People
- Title(参考訳): 庶民のための双方向化
- Authors: Juraj Dončević, Mario Brčić, Danijel Mlinarić,
- Abstract要約: Bifronsは、ドメイン固有のプログラミング言語を置き換えるBXレンズのライブラリである。
提案手法は、双方向変換の実装作業を単純化する。
単純なレンズテストフレームワークを提供することで、合理的に正確性を保証する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: This paper presents an innovative approach to applying bidirectional transformations (BX) in practice. To introduce BX to a wider audience of technologists, engineers, and researchers, we have chosen to use C# to develop Bifrons - a library of BX lenses that replaces domain-specific programming languages (DSL) in practical use. The proposed approach simplifies the implementation effort for two-way transformations by using simple symmetric lenses as the initial design pattern. It ensures correctness within reason by providing a simple lens-testing framework. We demonstrate the usability of BX lenses in a realistic scenario by using Bifrons to perform a case study experiment synchronizing data from two structurally and technologically heterogeneous databases.
- Abstract(参考訳): 本稿では、双方向変換(BX)を実践するための革新的なアプローチを提案する。
技術者、エンジニア、研究者の幅広い聴衆にBXを紹介するため、私たちはC#を使ってBixレンズのライブラリであるBifronsを開発することにしました。
提案手法は、単純な対称レンズを初期設計パターンとして用いることにより、双方向変換の実装作業を単純化する。
単純なレンズテストフレームワークを提供することで、合理的に正確性を保証する。
本稿では,BXレンズの実用性について,Bixonsを用いて2つの構造的および技術的に異質なデータベースからのデータ同期実験を行った。
関連論文リスト
- UIFormer: A Unified Transformer-based Framework for Incremental Few-Shot Object Detection and Instance Segmentation [38.331860053615955]
本稿では,Transformerアーキテクチャを用いたインクリメンタルな小ショットオブジェクト検出(iFSOD)とインスタンスセグメンテーション(iFSIS)のための新しいフレームワークを提案する。
私たちのゴールは、新しいオブジェクトクラスのいくつかの例しか利用できない状況に対して最適なソリューションを作ることです。
論文 参考訳(メタデータ) (2024-11-13T12:29:44Z) - Cross-Domain Few-Shot Learning via Adaptive Transformer Networks [16.289485655725013]
本稿では,ドメイン間数ショット学習のための適応型トランスフォーマネットワーク(ADAPTER)を提案する。
ADAPTERは2つのドメイン間で伝達可能な特徴を学習するために双方向の相互注意というアイデアに基づいて構築されている。
論文 参考訳(メタデータ) (2024-01-25T07:05:42Z) - Bidirectional Trained Tree-Structured Decoder for Handwritten
Mathematical Expression Recognition [51.66383337087724]
Handwriting Mathematical Expression Recognition (HMER) タスクは、OCRの分野における重要な分岐である。
近年の研究では、双方向コンテキスト情報の導入により、HMERモデルの性能が大幅に向上することが示されている。
本稿では,MF-SLT と双方向非同期トレーニング (BAT) 構造を提案する。
論文 参考訳(メタデータ) (2023-12-31T09:24:21Z) - Symmetrical Bidirectional Knowledge Alignment for Zero-Shot Sketch-Based
Image Retrieval [69.46139774646308]
本稿ではゼロショットスケッチベース画像検索(ZS-SBIR)の問題点について検討する。
目に見えないカテゴリのスケッチをクエリとして使用して、同じカテゴリのイメージにマッチさせることが目的だ。
ゼロショットスケッチに基づく画像検索(SBKA)のための新しい対称双方向知識アライメントを提案する。
論文 参考訳(メタデータ) (2023-12-16T04:50:34Z) - Dual Adaptive Representation Alignment for Cross-domain Few-shot
Learning [58.837146720228226]
ベース知識から学習することで、限られたサポートサンプルを持つ新規なクエリを認識することを目的としている。
この設定の最近の進歩は、ベース知識と新しいクエリサンプルが同じドメインに分散されていることを前提としている。
本稿では,ターゲットドメインで利用可能なサンプルが極めて少ないドメイン間数ショット学習の問題に対処することを提案する。
論文 参考訳(メタデータ) (2023-06-18T09:52:16Z) - Toward Learning Robust and Invariant Representations with Alignment
Regularization and Data Augmentation [76.85274970052762]
本論文はアライメント正則化の選択肢の増大を動機としている。
我々は、ロバスト性および不変性の次元に沿って、いくつかの人気のある設計選択のパフォーマンスを評価する。
我々はまた、現実的と考える仮定の下で経験的な研究を補完するために、アライメント正則化の挙動を正式に分析する。
論文 参考訳(メタデータ) (2022-06-04T04:29:19Z) - X2Parser: Cross-Lingual and Cross-Domain Framework for Task-Oriented
Compositional Semantic Parsing [51.81533991497547]
タスク指向コンポジションセマンティックパーシング(TCSP)は複雑なネストされたユーザクエリを処理する。
本報告では,TCSPの変換可能なクロスランガルとクロスドメインを比較した。
本稿では,フラット化意図とスロット表現を別々に予測し,両方の予測タスクをシーケンスラベリング問題にキャストすることを提案する。
論文 参考訳(メタデータ) (2021-06-07T16:40:05Z) - Self-supervised Pre-training with Hard Examples Improves Visual
Representations [110.23337264762512]
自己教師付き事前学習(ssp)は、ランダムな画像変換を用いて視覚表現学習のためのトレーニングデータを生成する。
まず,既存のSSPメソッドを擬似ラベル予測学習として統合するモデリングフレームワークを提案する。
そこで本研究では,疑似ラベルの予測が難しい学習例をランダムな画像変換で生成するデータ拡張手法を提案する。
論文 参考訳(メタデータ) (2020-12-25T02:44:22Z) - Few-shot Learning with LSSVM Base Learner and Transductive Modules [20.323443723115275]
計算オーバーヘッドの少ない既存のものよりも優れた生成を実現するベース学習機として,マルチクラス最小二乗支援ベクトルマシンを導入している。
また、クエリーサンプルを使用してサポートセットを変更する、シンプルで効果的なトランスダクティブモジュールを2つ提案する。
我々のモデルはFSLSTMと呼ばれ、MiniImageNetとCIFAR-FSによる数ショット学習ベンチマークで最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2020-09-12T13:16:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。