Emerging (2+1)D massive graviton in graphene-like systems
- URL: http://arxiv.org/abs/2109.07552v3
- Date: Tue, 21 Mar 2023 00:30:40 GMT
- Title: Emerging (2+1)D massive graviton in graphene-like systems
- Authors: Patricio Salgado-Rebolledo, Jiannis K. Pachos
- Abstract summary: Quantum aspects of gravity, such as massive gravitons, can emerge in experiments with fractional quantum Hall liquids.
We employ (2+1)-dimensional Dirac fermions, emerging in the continuous limit of a fermionic honeycomb lattice, coupled to massive gravitons, simulated by bosonic modes.
The similarity of our approach to current optical lattice configurations suggests that quantum signatures of gravity can be simulated in the laboratory in the near future.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Unlike the fundamental forces of the Standard Model the quantum effects of
gravity are still experimentally inaccessible. Rather surprisingly quantum
aspects of gravity, such as massive gravitons, can emerge in experiments with
fractional quantum Hall liquids. These liquids are analytically intractable and
thus offer limited insight into the mechanism that gives rise to quantum
gravity effects. To thoroughly understand this mechanism we employ a
graphene-like system and we modify it appropriately in order to realise a
simple (2+1)-dimensional massive gravity model. More concretely, we employ
(2+1)-dimensional Dirac fermions, emerging in the continuous limit of a
fermionic honeycomb lattice, coupled to massive gravitons, simulated by bosonic
modes positioned at the links of the lattice. The quantum character of gravity
can be determined directly by measuring the correlations on the bosonic atoms
or by the interactions they effectively induce on the fermions. The similarity
of our approach to current optical lattice configurations suggests that quantum
signatures of gravity can be simulated in the laboratory in the near future,
thus providing a platform to address question on the unification theories,
cosmology or the physics of black holes.
Related papers
- Quantum Sensing from Gravity as Universal Dephasing Channel for Qubits [41.96816488439435]
WeExploit the generic phenomena of the gravitational redshift and Aharonov-Bohm phase.
We show that entangled quantum states dephase with a universal rate.
We propose qubit-based platforms as quantum sensors for precision gravitometers and mechanical strain gauges.
arXiv Detail & Related papers (2024-06-05T13:36:06Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Proposal for a Quantum Mechanical Test of Gravity at Millimeter Scale [11.799047242336727]
We propose a novel experiment that utilizes the Josephson effect to detect the different evolution of quantum phase induced from the potential difference caused by gravity.
We demonstrate that this experiment can test gravity quantum mechanically at the millimeter scale, and also has a potential to investigate the parity invariance of gravity at small scales.
arXiv Detail & Related papers (2024-05-25T13:27:28Z) - Entanglement Dynamics in Quantum Continuous-Variable States [2.480301925841752]
Gravitation between two quantum masses is one of the most straightforward scenarios where quantum features of gravity could be observed.
This thesis introduces general tools to tackle interaction-mediated entanglement and applies them to two particles prepared in continuous-variable states.
arXiv Detail & Related papers (2024-05-12T19:21:21Z) - Quantum effects in gravity beyond the Newton potential from a delocalised quantum source [0.9405321764712891]
We show for the first time that gravity is not compatible with a classical description.
Experiments such as the generation of gravitationally induced entanglement between two quantum sources of gravity can be explained with the Newton potential.
arXiv Detail & Related papers (2024-02-15T19:33:04Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Gravity-induced entanglement between two massive microscopic particles in curved spacetime: I.The Schwarzschild background [2.915799083273604]
The gravitational field within curved spacetime can induce observable entanglement between particle pairs in both scenarios.
This approach establishes a more pronounced and extensive manifestation of the quantum influences of gravity.
These experiments hold immense advantages and implications for the detection of quantum gravity.
arXiv Detail & Related papers (2023-08-31T08:16:43Z) - Detecting single gravitons with quantum sensing [0.0]
We show that signatures of single graviton exchange can be observed in laboratory experiments.
In analogy to the discovery of the photo-electric effect for photons, such signatures can provide the first experimental clue of the quantization of gravity.
arXiv Detail & Related papers (2023-08-29T17:05:32Z) - Testing the nonclassicality of gravity with the field of a single
delocalized mass [55.2480439325792]
A setup is proposed that is based on a single delocalized mass coupled to a harmonically trapped test mass.
We investigate the in-principle feasibility of such an experiment, which turns out to crucially depend on the ability to tame Casimir-Polder forces.
arXiv Detail & Related papers (2023-07-18T15:40:16Z) - Gravitational effects in macroscopic quantum systems: a first-principles
analysis [0.0]
We analyze the weak-field limit of General Relativity with matter and its possible quantisations.
This analysis aims towards a predictive quantum theory to provide a first-principles description of gravitational effects in macroscopic quantum systems.
arXiv Detail & Related papers (2021-03-14T21:29:11Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.