Thermodynamics of Hamiltonian anyons with applications to quantum heat engines
- URL: http://arxiv.org/abs/2502.19019v2
- Date: Tue, 25 Mar 2025 14:08:03 GMT
- Title: Thermodynamics of Hamiltonian anyons with applications to quantum heat engines
- Authors: Joe Dunlop, Álvaro Tejero, Michalis Skotiniotis, Daniel Manzano,
- Abstract summary: Topological anyons interpolate between bosons and fermions, picking up a complex phase when exchanged.<n>Recent research has demonstrated that similar statistical behavior can arise with mixtures of bosonic and fermionic pairs.<n>We introduce an alternative implementation of such statistical anyons, based on promoting or suppressing the population of symmetric states via a symmetry generating Hamiltonian.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The behavior of a collection of identical particles is intimately linked to the symmetries of their wavefunction under particle exchange. Topological anyons, arising as quasiparticles in low-dimensional systems, interpolate between bosons and fermions, picking up a complex phase when exchanged. Recent research has demonstrated that similar statistical behavior can arise with mixtures of bosonic and fermionic pairs, offering theoretical and experimental simplicity. We introduce an alternative implementation of such statistical anyons, based on promoting or suppressing the population of symmetric states via a symmetry generating Hamiltonian. The scheme has numerous advantages: anyonic statistics emerge in a single particle pair, extending straightforwardly to larger systems; the statistical properties can be dynamically adjusted; and the setup can be simulated efficiently. We show how exchange symmetry can be exploited to improve the performance of heat engines, and demonstrate a reversible work extraction cycle in which bosonization and fermionization replace compression and expansion strokes. Additionally, we investigate emergent thermal properties, including critical phenomena, in large statistical anyon systems.
Related papers
- Experimental observation of parity-symmetry-protected phenomena in the quantum Rabi model with a trapped ion [13.368172641201571]
We experimentally simulate a highly controllable extended quantum Rabi model tuning into the ultra-strong or deep coupling regime.<n>We find sensitive responses for the two-level system entropy and phonon Wigner function in the deep coupling regime.<n>This work offers the prospect of exploring symmetry-controlled quantum phenomena and their applications in high-precision quantum technologies.
arXiv Detail & Related papers (2025-01-10T12:23:43Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Oscillatory dissipative tunneling in an asymmetric double-well potential [32.65699367892846]
Chemical research will benefit from a fully adjustable, asymmetric double-well equipped with precise measurement capabilities of the tunneling rates.<n>We show a quantum simulator system that consists of a continuously driven Kerr parametric oscillator with a third order non-linearity that can be operated in the quantum regime to create a fully asymmetric double-well.<n>Our work is a first step for the development of analog molecule simulators of proton transfer reactions based on quantum superconducting circuits.
arXiv Detail & Related papers (2024-09-19T22:43:07Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum Heat Engines with Singular Interactions [0.0]
We show that a bosonic working medium can yield better performance than a fermionic medium.
We explore the interplay between interparticle interactions and wave function symmetry on engine performance.
arXiv Detail & Related papers (2021-04-30T18:20:45Z) - Nonequilibrium fluctuations of a quantum heat engine [0.0]
We experimentally investigate the efficiency and nonequilibrium entropy production statistics of a spin-1/2 quantum Otto cycle.
Our results characterize the statistical features of a small-scale thermal machine in the quantum domain.
arXiv Detail & Related papers (2021-04-27T18:53:53Z) - Exact thermal properties of free-fermionic spin chains [68.8204255655161]
We focus on spin chain models that admit a description in terms of free fermions.
Errors stemming from the ubiquitous approximation are identified in the neighborhood of the critical point at low temperatures.
arXiv Detail & Related papers (2021-03-30T13:15:44Z) - Thermodynamics of Statistical Anyons [0.0]
In low-dimensional systems, indistinguishable particles can display statistics that interpolate between bosons and fermions.
Signatures of these "anyons" have been detected in two-dimensional quasiparticle excitations of the fractional quantum Hall effect.
We propose "statistical anyons" realized through a statistical mixture of particles with bosonic and fermionic symmetry.
arXiv Detail & Related papers (2021-02-03T18:18:09Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.