論文の概要: A HEART for the environment: Transformer-Based Spatiotemporal Modeling for Air Quality Prediction
- arxiv url: http://arxiv.org/abs/2502.19042v1
- Date: Wed, 26 Feb 2025 10:54:27 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:56:58.946875
- Title: A HEART for the environment: Transformer-Based Spatiotemporal Modeling for Air Quality Prediction
- Title(参考訳): 環境のためのHEART:空気質予測のための変圧器を用いた時空間モデル
- Authors: Norbert Bodendorfer,
- Abstract要約: ルル環境は高度でスケーラブルな大気汚染予測システムである。
エンコーダとデコーダの畳み込みニューラルネットワークを含み、4つの主要な汚染物質の平均汚染レベルを予測する。
本稿では,予測精度を向上させるための注意機構を備えたニューラルネットワークの強化について検討する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Accurate and reliable air pollution forecasting is crucial for effective environmental management and policy-making. llull-environment is a sophisticated and scalable forecasting system for air pollution, inspired by previous models currently operational in Madrid and Valladolid (Spain). It contains (among other key components) an encoder-decoder convolutional neural network to forecast mean pollution levels for four key pollutants (NO$_2$, O$_3$, PM$_{10}$, PM$_{2.5}$) using historical data, external forecasts, and other contextual features. This paper investigates the augmentation of this neural network with an attention mechanism to improve predictive accuracy. The proposed attention mechanism pre-processes tensors containing the input features before passing them to the existing mean forecasting model. The resulting model is a combination of several architectures and ideas and can be described as a "Hybrid Enhanced Autoregressive Transformer", or HEART. The effectiveness of the approach is evaluated by comparing the mean square error (MSE) across different attention layouts against the system without such a mechanism. We observe a significant reduction in MSE of up to 22%, with an average of 7.5% across tested cities and pollutants. The performance of a given attention mechanism turns out to depend on the pollutant, highlighting the differences in their creation and dissipation processes. Our findings are not restricted to optimizing air quality prediction models, but are applicable generally to (fixed length) time series forecasting.
- Abstract(参考訳): 正確な大気汚染予測は、効果的な環境管理と政策立案に不可欠である。
llull-environmentは高度でスケーラブルな大気汚染予測システムであり、マドリードとヴァラドリッド(スペイン)で現在運用されている以前のモデルにインスパイアされている。
エンコーダ・デコーダの畳み込みニューラルネットワークは、4つの主要な汚染物質(NO$_2$, O$_3$, PM$_{10}$, PM$_{2.5}$)の平均汚染レベルを予測する。
本稿では,予測精度を向上させるための注意機構を備えたニューラルネットワークの強化について検討する。
提案したアテンション機構は、入力特徴を含むテンソルを前処理し、それらを既存の平均予測モデルに渡す。
結果として得られたモデルは、いくつかのアーキテクチャとアイデアの組み合わせであり、"Hybrid Enhanced Autoregressive Transformer"(HEART)と表現できる。
平均二乗誤差(MSE)を異なるアテンションレイアウトで比較することにより,そのような機構を使わずにシステムに対するアプローチの有効性を評価する。
MSEの最大22%が大幅に減少し、テスト対象都市や汚染物質の平均は7.5%である。
所定の注意機構の性能は汚染物質に依存していることが判明し、その生成過程と散逸過程の違いを強調した。
本研究は,空気質予測モデルの最適化に限らず,(固定長)時系列予測に適用可能である。
関連論文リスト
- Hybrid Forecasting of Geopolitical Events [71.73737011120103]
SAGEは、人間と機械が生成した予測を組み合わせたハイブリッド予測システムである。
このシステムは、確率と評価されたスキルに基づいて、人間と機械の予測の重み付けを集約する。
機械による予測にアクセスできる熟練した予測者は、過去のデータしか見ていない者よりも優れていた。
論文 参考訳(メタデータ) (2024-12-14T22:09:45Z) - Variable importance measure for spatial machine learning models with application to air pollution exposure prediction [2.633085745593072]
本研究の目的は, 大気汚染の健康影響を学習する能力を最大限に活用するために, データのない場所での被験者の大気汚染の予測を行うことである。
これらの課題を、米国国家PM2.5亜種規制データの硫黄(S)と、シアトルの交通関連大気汚染データセットの超微粒子(UFP)の2つのデータセットで解決する。
私たちの重要な貢献は、幅広いモデルの解釈可能かつ同等の尺度に導かれる、変数の重要度に対する一対一のアプローチである。
論文 参考訳(メタデータ) (2024-06-04T05:51:36Z) - CogDPM: Diffusion Probabilistic Models via Cognitive Predictive Coding [62.075029712357]
本研究は認知拡散確率モデル(CogDPM)を紹介する。
CogDPMは拡散モデルの階層的サンプリング能力に基づく精度推定法と拡散モデル固有の性質から推定される精度重み付きガイダンスを備える。
我々は,Universal Kindomの降水量と表面風速データセットを用いた実世界の予測タスクにCogDPMを適用した。
論文 参考訳(メタデータ) (2024-05-03T15:54:50Z) - WaveCatBoost for Probabilistic Forecasting of Regional Air Quality Data [0.0]
この手紙は、大気汚染物質のリアルタイム濃度を予測するために設計された新しいWaveCatBoostアーキテクチャを提示する。
このハイブリッドアプローチは、時系列を高周波および低周波成分に効率よく変換し、ノイズから信号を抽出する。
論文 参考訳(メタデータ) (2024-04-08T13:01:25Z) - Back to the Future: GNN-based NO$_2$ Forecasting via Future Covariates [49.93577170464313]
都市全域にわたる地上監視ネットワークにおける大気質観測について検討する。
我々は過去と将来の共変分を現在の観測に埋め込む条件付きブロックを提案する。
将来の気象情報に対する条件付けは,過去の交通状況を考えるよりも影響が大きいことが判明した。
論文 参考訳(メタデータ) (2024-04-08T09:13:16Z) - ExtremeCast: Boosting Extreme Value Prediction for Global Weather Forecast [57.6987191099507]
非対称な最適化を行い、極端な天気予報を得るために極端な値を強調する新しい損失関数であるExlossを導入する。
また,複数のランダムサンプルを用いて予測結果の不確かさをキャプチャするExBoosterについても紹介する。
提案手法は,上位中距離予測モデルに匹敵する全体的な予測精度を維持しつつ,極端気象予測における最先端性能を達成することができる。
論文 参考訳(メタデータ) (2024-02-02T10:34:13Z) - Generative ensemble deep learning severe weather prediction from a
deterministic convection-allowing model [0.0]
コンボリューション・ニューラル・ネットワーク(CNN)とコンボリューション・コンボリューション・アロイング・モデル(CAM)予測を併用する。
CGANは決定論的CAM予測から合成アンサンブルメンバーを作成するように設計されている。
この手法は,BSS(Brier Skill Score)を最大20%の精度で予測できる。
論文 参考訳(メタデータ) (2023-10-09T18:02:11Z) - Residual Corrective Diffusion Modeling for Km-scale Atmospheric Downscaling [58.456404022536425]
気象・気候からの物理的危険予知技術の現状には、粗い解像度のグローバルな入力によって駆動される高価なkmスケールの数値シミュレーションが必要である。
ここでは、コスト効率のよい機械学習代替手段として、このようなグローバルな入力をkmスケールにダウンスケールするために、生成拡散アーキテクチャを探索する。
このモデルは、台湾上空の地域気象モデルから2kmのデータを予測するために訓練され、世界25kmの再解析に基づいている。
論文 参考訳(メタデータ) (2023-09-24T19:57:22Z) - Statistical post-processing of visibility ensemble forecasts [0.0]
局所的,半局所的,局所的に訓練された比例確率対数回帰(POLR)と多層パーセプトロン(MLP)ニューラルネットワーク分類器の予測性能について検討した。
気候学的な予測は生のアンサンブルを広いマージンで上回るが、後処理により予測スキルが大幅に向上することを示した。
論文 参考訳(メタデータ) (2023-05-24T16:41:36Z) - Beyond S-curves: Recurrent Neural Networks for Technology Forecasting [60.82125150951035]
我々は機械学習と時系列予測の最近の進歩を生かしたオートコーダアプローチを開発した。
S曲線予測は、単純なARIMAベースラインに匹敵する平均パーセンテージ誤差(MAPE)を示す。
我々のオートエンコーダアプローチは、2番目に高い結果に対して平均13.5%改善する。
論文 参考訳(メタデータ) (2022-11-28T14:16:22Z) - Machine learning for total cloud cover prediction [0.0]
本稿では,多層パーセプトロン(MLP)ニューラルネットワーク,勾配促進機(GBM)およびランダムフォレスト(RF)法を用いた後処理の性能について検討する。
生のアンサンブルと比較して、全ての校正法は予測スキルを著しく向上させる。
RFモデルは予測性能が最小となる一方、POLRとGBMのアプローチは最良である。
論文 参考訳(メタデータ) (2020-01-16T17:13:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。