論文の概要: ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision
- arxiv url: http://arxiv.org/abs/2307.01448v1
- Date: Tue, 4 Jul 2023 02:52:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-07-06 18:25:52.985347
- Title: ReactIE: Enhancing Chemical Reaction Extraction with Weak Supervision
- Title(参考訳): ReactIE:Weak Supervisionによる化学反応抽出の強化
- Authors: Ming Zhong, Siru Ouyang, Minhao Jiang, Vivian Hu, Yizhu Jiao, Xuan
Wang, Jiawei Han
- Abstract要約: 構造化化学反応情報は、実験とコンピュータ支援医薬品設計のような先進的な取り組みに携わる化学者にとって重要な役割を担っている。
科学的文献から構造的反応を抽出することが重要であるにもかかわらず、この目的のためのデータアノテーションは、ドメインの専門家が必要とする多大な労力のためにコストを抑えることができる。
本稿では,2つの弱教師付き事前学習手法を組み合わせたReactIEを提案する。本手法では,テキスト内の頻繁なパターンを言語的手がかりとして用いて,化学反応の特異な特性を同定する。
- 参考スコア(独自算出の注目度): 27.850325653751078
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Structured chemical reaction information plays a vital role for chemists
engaged in laboratory work and advanced endeavors such as computer-aided drug
design. Despite the importance of extracting structured reactions from
scientific literature, data annotation for this purpose is cost-prohibitive due
to the significant labor required from domain experts. Consequently, the
scarcity of sufficient training data poses an obstacle to the progress of
related models in this domain. In this paper, we propose ReactIE, which
combines two weakly supervised approaches for pre-training. Our method utilizes
frequent patterns within the text as linguistic cues to identify specific
characteristics of chemical reactions. Additionally, we adopt synthetic data
from patent records as distant supervision to incorporate domain knowledge into
the model. Experiments demonstrate that ReactIE achieves substantial
improvements and outperforms all existing baselines.
- Abstract(参考訳): 構造化化学反応情報は、実験やコンピュータ支援医薬品設計などの先進的な取り組みに携わる化学者にとって重要な役割を担っている。
科学文献から構造化された反応を抽出することの重要性にもかかわらず、この目的のためのデータアノテーションは、ドメインの専門家が必要とする膨大な労力のためにコストがかかる。
したがって、十分なトレーニングデータの不足は、この分野における関連するモデルの進歩の障害となる。
本稿では,事前学習のための2つの弱い教師付きアプローチを組み合わせたreactieを提案する。
本手法は, テキスト中の頻繁なパターンを言語的手がかりとして, 化学反応の特徴を同定する。
さらに,特許記録からの合成データを遠隔監視として採用し,ドメイン知識をモデルに組み込む。
実験によると、ReactIEは大幅に改善され、既存のベースラインをすべて上回っている。
関連論文リスト
- A Self-feedback Knowledge Elicitation Approach for Chemical Reaction Predictions [24.80165173525286]
本稿では,データ処理による自己フィードバック型知識抽出手法を提案する。
我々は、事前知識を大規模言語モデルに注入するために適応的な即時学習を採用する。
この研究は、科学研究における知識の活用のための新しいパラダイムを提供する。
論文 参考訳(メタデータ) (2024-04-15T09:26:33Z) - Contextual Molecule Representation Learning from Chemical Reaction
Knowledge [24.501564702095937]
本稿では,共通化学における原子結合規則をうまく利用した自己教師型学習フレームワークREMOを紹介する。
REMOは、文献における170万の既知の化学反応に関するグラフ/トランスフォーマーエンコーダを事前訓練する。
論文 参考訳(メタデータ) (2024-02-21T12:58:40Z) - An Autonomous Large Language Model Agent for Chemical Literature Data
Mining [60.85177362167166]
本稿では,幅広い化学文献から高忠実度抽出が可能なエンドツーエンドAIエージェントフレームワークを提案する。
本フレームワークの有効性は,反応条件データの精度,リコール,F1スコアを用いて評価する。
論文 参考訳(メタデータ) (2024-02-20T13:21:46Z) - Retrosynthesis prediction enhanced by in-silico reaction data
augmentation [66.5643280109899]
RetroWISEは,実データから推定されるベースモデルを用いて,シリコン内反応の生成と増大を行うフレームワークである。
3つのベンチマークデータセットで、RetroWISEは最先端モデルに対して最高の全体的なパフォーマンスを達成する。
論文 参考訳(メタデータ) (2024-01-31T07:40:37Z) - Chemist-X: Large Language Model-empowered Agent for Reaction Condition Recommendation in Chemical Synthesis [57.70772230913099]
Chemist-Xは、検索増強生成(RAG)技術を用いた化学合成において、反応条件レコメンデーション(RCR)タスクを自動化する。
Chemist-Xはオンラインの分子データベースを尋問し、最新の文献データベースから重要なデータを蒸留する。
Chemist-Xは化学者の作業量を大幅に減らし、より根本的で創造的な問題に集中できるようにする。
論文 参考訳(メタデータ) (2023-11-16T01:21:33Z) - AI for Interpretable Chemistry: Predicting Radical Mechanistic Pathways
via Contrastive Learning [45.379791270351184]
RMechRPは、新しいディープラーニングベースの反応予測システムである。
我々は、ラジカル反応の公開データベースであるRMechDBを用いてモデルを開発し、訓練する。
本研究は,RMechRPが正確かつ解釈可能な予測に有効であることを示す。
論文 参考訳(メタデータ) (2023-11-02T09:47:27Z) - Stress Testing BERT Anaphora Resolution Models for Reaction Extraction
in Chemical Patents [7.653466578233261]
化学特許には、共参照(co-reference)、変換(transform)、反応関連(reaction associated)、組立(work up)、包含(intained)の5つのアナフォリックな関係がある。
我々の目標は、ノイズフリーでノイズの多い環境で、反応テキストに対するアナフォラ分解能モデルの性能がどのように異なるかを検討することである。
論文 参考訳(メタデータ) (2023-06-23T09:01:56Z) - ChemVise: Maximizing Out-of-Distribution Chemical Detection with the
Novel Application of Zero-Shot Learning [60.02503434201552]
本研究は,簡単な学習セットから複雑な露光の学習近似を提案する。
合成センサ応答に対するこのアプローチは, 分布外の化学分析物の検出を驚くほど改善することを示した。
論文 参考訳(メタデータ) (2023-02-09T20:19:57Z) - Improving Molecular Representation Learning with Metric
Learning-enhanced Optimal Transport [49.237577649802034]
分子レグレッション問題に対する一般化能力を高めるために,MROTと呼ばれる新しい最適輸送ベースアルゴリズムを開発した。
MROTは最先端のモデルよりも優れており、新しい物質の発見を加速する有望な可能性を示している。
論文 参考訳(メタデータ) (2022-02-13T04:56:18Z) - Rxn Hypergraph: a Hypergraph Attention Model for Chemical Reaction
Representation [70.97737157902947]
現在、化学反応を強固に表現するための普遍的で広く採用されている方法は存在しない。
ここでは、グラフに基づく分子構造の表現を利用して、ハイパーグラフアテンションニューラルネットワークアプローチを開発し、テストする。
我々はこのハイパーグラフ表現を3つの独立な化学反応データセットを用いて3つの実験で評価した。
論文 参考訳(メタデータ) (2022-01-02T12:33:10Z) - Dataset Bias in the Natural Sciences: A Case Study in Chemical Reaction
Prediction and Synthesis Design [0.8594140167290099]
化学反応予測と合成設計の分野における方向変化を必要とする3つのトレンドを同定する。
まず、反応データセットを反応物質と試薬に分解する方法は、非現実的な寛大な方法でテストモデルを奨励する。
第2に,誤記データの発生状況に注目し,データ適合性ではなく,異常除去に重点を置くべきであることを示唆する。
論文 参考訳(メタデータ) (2021-05-06T13:11:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。