UQABench: Evaluating User Embedding for Prompting LLMs in Personalized Question Answering
- URL: http://arxiv.org/abs/2502.19178v2
- Date: Tue, 01 Apr 2025 08:18:34 GMT
- Title: UQABench: Evaluating User Embedding for Prompting LLMs in Personalized Question Answering
- Authors: Langming Liu, Shilei Liu, Yujin Yuan, Yizhen Zhang, Bencheng Yan, Zhiyuan Zeng, Zihao Wang, Jiaqi Liu, Di Wang, Wenbo Su, Pengjie Wang, Jian Xu, Bo Zheng,
- Abstract summary: name is a benchmark designed to evaluate the effectiveness of user embeddings in prompting large language models for personalization.<n>We conduct extensive experiments on various state-of-the-art methods for modeling user embeddings.
- Score: 39.79275025010785
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large language models (LLMs) achieve remarkable success in natural language processing (NLP). In practical scenarios like recommendations, as users increasingly seek personalized experiences, it becomes crucial to incorporate user interaction history into the context of LLMs to enhance personalization. However, from a practical utility perspective, user interactions' extensive length and noise present challenges when used directly as text prompts. A promising solution is to compress and distill interactions into compact embeddings, serving as soft prompts to assist LLMs in generating personalized responses. Although this approach brings efficiency, a critical concern emerges: Can user embeddings adequately capture valuable information and prompt LLMs? To address this concern, we propose \name, a benchmark designed to evaluate the effectiveness of user embeddings in prompting LLMs for personalization. We establish a fair and standardized evaluation process, encompassing pre-training, fine-tuning, and evaluation stages. To thoroughly evaluate user embeddings, we design three dimensions of tasks: sequence understanding, action prediction, and interest perception. These evaluation tasks cover the industry's demands in traditional recommendation tasks, such as improving prediction accuracy, and its aspirations for LLM-based methods, such as accurately understanding user interests and enhancing the user experience. We conduct extensive experiments on various state-of-the-art methods for modeling user embeddings. Additionally, we reveal the scaling laws of leveraging user embeddings to prompt LLMs. The benchmark is available online.
Related papers
- Know Me, Respond to Me: Benchmarking LLMs for Dynamic User Profiling and Personalized Responses at Scale [51.9706400130481]
Large Language Models (LLMs) have emerged as personalized assistants for users across a wide range of tasks.
PERSONAMEM features curated user profiles with over 180 simulated user-LLM interaction histories.
We evaluate LLM chatbots' ability to identify the most suitable response according to the current state of the user's profile.
arXiv Detail & Related papers (2025-04-19T08:16:10Z) - FSPO: Few-Shot Preference Optimization of Synthetic Preference Data in LLMs Elicits Effective Personalization to Real Users [111.56469697145519]
We propose Few-Shot Preference Optimization, which reframes reward modeling as a meta-learning problem.
Under this framework, an LLM learns to quickly adapt to a user via a few labeled preferences from that user, constructing a personalized reward function for them.
We generate over 1M synthetic personalized preferences using publicly available LLMs.
We evaluate FSPO on personalized open-ended generation for up to 1,500 synthetic users across three domains: movie reviews, pedagogical adaptation based on educational background, and general question answering, along with a controlled human study.
arXiv Detail & Related papers (2025-02-26T17:08:46Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
We train large language models (LLMs) that can ''interact to align''<n>We develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures.<n>For evaluation, we establish the ALOE benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations.
arXiv Detail & Related papers (2024-10-04T17:48:29Z) - WildFeedback: Aligning LLMs With In-situ User Interactions And Feedback [36.06000681394939]
We introduce WildFeedback, a novel framework that leverages in-situ user feedback during conversations with large language models (LLMs) to create preference datasets automatically.<n>Our experiments demonstrate that LLMs fine-tuned on WildFeedback dataset exhibit significantly improved alignment with user preferences.
arXiv Detail & Related papers (2024-08-28T05:53:46Z) - Reinforced Prompt Personalization for Recommendation with Large Language Models [24.360796133889156]
We introduce the concept of instance-wise prompting, aiming at personalizing discrete prompts for individual users.<n>To improve efficiency and quality, RPP personalizes prompts at the sentence level rather than searching in the vast vocabulary word-by-word.
arXiv Detail & Related papers (2024-07-24T09:24:49Z) - Few-shot Personalization of LLMs with Mis-aligned Responses [40.0349773257245]
This paper proposes a new approach for a few-shot personalization of large language models (LLMs)
Our key idea is to learn a set of personalized prompts for each user by progressively improving the prompts using LLMs.
During an iterative process of prompt improvement, we incorporate the contexts of mis-aligned responses by LLMs.
arXiv Detail & Related papers (2024-06-26T18:29:12Z) - CLAMBER: A Benchmark of Identifying and Clarifying Ambiguous Information Needs in Large Language Models [60.59638232596912]
We introduce CLAMBER, a benchmark for evaluating large language models (LLMs)
Building upon the taxonomy, we construct 12K high-quality data to assess the strengths, weaknesses, and potential risks of various off-the-shelf LLMs.
Our findings indicate the limited practical utility of current LLMs in identifying and clarifying ambiguous user queries.
arXiv Detail & Related papers (2024-05-20T14:34:01Z) - RepEval: Effective Text Evaluation with LLM Representation [55.26340302485898]
RepEval is a metric that leverages the projection of Large Language Models (LLMs) representations for evaluation.
Our work underscores the richness of information regarding text quality embedded within LLM representations, offering insights for the development of new metrics.
arXiv Detail & Related papers (2024-04-30T13:50:55Z) - User-LLM: Efficient LLM Contextualization with User Embeddings [23.226164112909643]
User-LLM is a novel framework that leverages user embeddings to directly contextualize large language models with user history interactions.
Our approach achieves significant efficiency gains by representing user timelines directly as embeddings, leading to substantial inference speedups of up to 78.1X.
arXiv Detail & Related papers (2024-02-21T08:03:27Z) - On the steerability of large language models toward data-driven personas [98.9138902560793]
Large language models (LLMs) are known to generate biased responses where the opinions of certain groups and populations are underrepresented.
Here, we present a novel approach to achieve controllable generation of specific viewpoints using LLMs.
arXiv Detail & Related papers (2023-11-08T19:01:13Z) - Explainable Active Learning for Preference Elicitation [0.0]
We employ Active Learning (AL) to solve the addressed problem with the objective of maximizing information acquisition with minimal user effort.
AL operates for selecting informative data from a large unlabeled set to inquire an oracle to label them.
It harvests user feedback (given for the system's explanations on the presented items) over informative samples to update an underlying machine learning (ML) model.
arXiv Detail & Related papers (2023-09-01T09:22:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.