User-LLM: Efficient LLM Contextualization with User Embeddings
- URL: http://arxiv.org/abs/2402.13598v2
- Date: Mon, 9 Sep 2024 19:51:57 GMT
- Title: User-LLM: Efficient LLM Contextualization with User Embeddings
- Authors: Lin Ning, Luyang Liu, Jiaxing Wu, Neo Wu, Devora Berlowitz, Sushant Prakash, Bradley Green, Shawn O'Banion, Jun Xie,
- Abstract summary: User-LLM is a novel framework that leverages user embeddings to directly contextualize large language models with user history interactions.
Our approach achieves significant efficiency gains by representing user timelines directly as embeddings, leading to substantial inference speedups of up to 78.1X.
- Score: 23.226164112909643
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) have achieved remarkable success across various domains, but effectively incorporating complex and potentially noisy user timeline data into LLMs remains a challenge. Current approaches often involve translating user timelines into text descriptions before feeding them to LLMs, which can be inefficient and may not fully capture the nuances of user behavior. Inspired by how LLMs are effectively integrated with images through direct embeddings, we propose User-LLM, a novel framework that leverages user embeddings to directly contextualize LLMs with user history interactions. These embeddings, generated by a user encoder pretrained using self-supervised learning on diverse user interactions, capture latent user behaviors and interests as well as their evolution over time. We integrate these user embeddings with LLMs through cross-attention, enabling LLMs to dynamically adapt their responses based on the context of a user's past actions and preferences. Our approach achieves significant efficiency gains by representing user timelines directly as embeddings, leading to substantial inference speedups of up to 78.1X. Comprehensive experiments on MovieLens, Amazon Review, and Google Local Review datasets demonstrate that User-LLM outperforms text-prompt-based contextualization on tasks requiring deep user understanding, with improvements of up to 16.33%, particularly excelling on long sequences that capture subtle shifts in user behavior. Furthermore, the incorporation of Perceiver layers streamlines the integration between user encoders and LLMs, yielding additional computational savings.
Related papers
- LIBER: Lifelong User Behavior Modeling Based on Large Language Models [42.045535303737694]
We propose Lifelong User Behavior Modeling (LIBER) based on large language models.
LIBER has been deployed on Huawei's music recommendation service and achieved substantial improvements in users' play count and play time by 3.01% and 7.69%.
arXiv Detail & Related papers (2024-11-22T03:43:41Z) - Aligning LLMs with Individual Preferences via Interaction [51.72200436159636]
We train large language models (LLMs) that can ''interact to align''
We develop a multi-turn preference dataset containing 3K+ multi-turn conversations in tree structures.
For evaluation, we establish the ALOE benchmark, consisting of 100 carefully selected examples and well-designed metrics to measure the customized alignment performance during conversations.
arXiv Detail & Related papers (2024-10-04T17:48:29Z) - Beyond Inter-Item Relations: Dynamic Adaption for Enhancing LLM-Based Sequential Recommendation [83.87767101732351]
Sequential recommender systems (SRS) predict the next items that users may prefer based on user historical interaction sequences.
Inspired by the rise of large language models (LLMs) in various AI applications, there is a surge of work on LLM-based SRS.
We propose DARec, a sequential recommendation model built on top of coarse-grained adaption for capturing inter-item relations.
arXiv Detail & Related papers (2024-08-14T10:03:40Z) - Beyond the Turn-Based Game: Enabling Real-Time Conversations with Duplex Models [66.24055500785657]
Traditional turn-based chat systems prevent users from verbally interacting with system while it is generating responses.
To overcome these limitations, we adapt existing LLMs to listen users while generating output and provide users with instant feedback.
We build a dataset consisting of alternating time slices of queries and responses as well as covering typical feedback types in instantaneous interactions.
arXiv Detail & Related papers (2024-06-22T03:20:10Z) - A Practice-Friendly LLM-Enhanced Paradigm with Preference Parsing for Sequential Recommendation [15.153844486572932]
This paper proposes a practice-friendly LLM-enhanced paradigm with preference parsing (P2Rec) for sequential recommender systems (SRS)
Specifically, in the information reconstruction stage, we design a new user-level SFT task for collaborative information injection with the assistance of a pre-trained SRS model.
Our goal is to let LLM learn to reconstruct a corresponding prior preference distribution from each user's interaction sequence.
arXiv Detail & Related papers (2024-06-01T07:18:56Z) - Breaking the Length Barrier: LLM-Enhanced CTR Prediction in Long Textual User Behaviors [25.086118164540974]
Large language models (LLMs) are used to improve the performance of click-through rate (CTR) prediction.
As user sequences grow longer, the current efficiency of LLMs is inadequate for training on billions of users and items.
We propose Behavior Aggregated Hierarchical (BAHE) to enhance the efficiency of LLM-based CTR modeling.
arXiv Detail & Related papers (2024-03-28T12:05:15Z) - CoLLM: Integrating Collaborative Embeddings into Large Language Models for Recommendation [60.2700801392527]
We introduce CoLLM, an innovative LLMRec methodology that seamlessly incorporates collaborative information into LLMs for recommendation.
CoLLM captures collaborative information through an external traditional model and maps it to the input token embedding space of LLM.
Extensive experiments validate that CoLLM adeptly integrates collaborative information into LLMs, resulting in enhanced recommendation performance.
arXiv Detail & Related papers (2023-10-30T12:25:00Z) - Do LLMs Understand User Preferences? Evaluating LLMs On User Rating
Prediction [15.793007223588672]
Large Language Models (LLMs) have demonstrated exceptional capabilities in generalizing to new tasks in a zero-shot or few-shot manner.
We investigate various LLMs in different sizes, ranging from 250M to 540B parameters and evaluate their performance in zero-shot, few-shot, and fine-tuning scenarios.
arXiv Detail & Related papers (2023-05-10T21:43:42Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
Large language models (LLMs) are able to generate human-like, fluent responses for many downstream tasks.
This paper proposes a LLM-Augmenter system, which augments a black-box LLM with a set of plug-and-play modules.
arXiv Detail & Related papers (2023-02-24T18:48:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.