Integrating Biological and Machine Intelligence: Attention Mechanisms in Brain-Computer Interfaces
- URL: http://arxiv.org/abs/2502.19281v1
- Date: Wed, 26 Feb 2025 16:38:28 GMT
- Title: Integrating Biological and Machine Intelligence: Attention Mechanisms in Brain-Computer Interfaces
- Authors: Jiyuan Wang, Weishan Ye, Jialin He, Li Zhang, Gan Huang, Zhuliang Yu, Zhen Liang,
- Abstract summary: By capturing EEG variations across time, frequency, and spatial channels, attention mechanisms improve feature extraction, representation learning, and model robustness.<n>Traditional attention mechanisms integrate with convolutional and recurrent networks, and Transformer-based multi-head self-attention, which excels in capturing long-range dependencies.<n>We discuss existing challenges and emerging trends in attention-based EEG modeling, highlighting future directions for advancing BCI technology.
- Score: 5.4909621483043685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the rapid advancement of deep learning, attention mechanisms have become indispensable in electroencephalography (EEG) signal analysis, significantly enhancing Brain-Computer Interface (BCI) applications. This paper presents a comprehensive review of traditional and Transformer-based attention mechanisms, their embedding strategies, and their applications in EEG-based BCI, with a particular emphasis on multimodal data fusion. By capturing EEG variations across time, frequency, and spatial channels, attention mechanisms improve feature extraction, representation learning, and model robustness. These methods can be broadly categorized into traditional attention mechanisms, which typically integrate with convolutional and recurrent networks, and Transformer-based multi-head self-attention, which excels in capturing long-range dependencies. Beyond single-modality analysis, attention mechanisms also enhance multimodal EEG applications, facilitating effective fusion between EEG and other physiological or sensory data. Finally, we discuss existing challenges and emerging trends in attention-based EEG modeling, highlighting future directions for advancing BCI technology. This review aims to provide valuable insights for researchers seeking to leverage attention mechanisms for improved EEG interpretation and application.
Related papers
- Large Cognition Model: Towards Pretrained EEG Foundation Model [0.0]
We propose a transformer-based foundation model designed to generalize across diverse EEG datasets and downstream tasks.
Our findings highlight the potential of pretrained EEG foundation models to accelerate advancements in neuroscience, personalized medicine, and BCI technology.
arXiv Detail & Related papers (2025-02-11T04:28:10Z) - CEReBrO: Compact Encoder for Representations of Brain Oscillations Using Efficient Alternating Attention [53.539020807256904]
We introduce a Compact for Representations of Brain Oscillations using alternating attention (CEReBrO)<n>Our tokenization scheme represents EEG signals at a per-channel patch.<n>We propose an alternating attention mechanism that jointly models intra-channel temporal dynamics and inter-channel spatial correlations, achieving 2x speed improvement with 6x less memory required compared to standard self-attention.
arXiv Detail & Related papers (2025-01-18T21:44:38Z) - Comprehensive Review of EEG-to-Output Research: Decoding Neural Signals into Images, Videos, and Audio [0.0]
Recent advancements in machine learning and generative modeling have catalyzed the application of EEG in reconstructing perceptual experiences.
This paper systematically reviews EEG-to-output research, focusing on state-of-the-art generative methods, evaluation metrics, and data challenges.
arXiv Detail & Related papers (2024-12-28T03:50:56Z) - CognitionCapturer: Decoding Visual Stimuli From Human EEG Signal With Multimodal Information [61.1904164368732]
We propose CognitionCapturer, a unified framework that fully leverages multimodal data to represent EEG signals.<n>Specifically, CognitionCapturer trains Modality Experts for each modality to extract cross-modal information from the EEG modality.<n>The framework does not require any fine-tuning of the generative models and can be extended to incorporate more modalities.
arXiv Detail & Related papers (2024-12-13T16:27:54Z) - Machine Learning Innovations in CPR: A Comprehensive Survey on Enhanced Resuscitation Techniques [52.71395121577439]
This survey paper explores the transformative role of Machine Learning (ML) and Artificial Intelligence (AI) in Cardiopulmonary Resuscitation (CPR)
It highlights the impact of predictive modeling, AI-enhanced devices, and real-time data analysis in improving resuscitation outcomes.
The paper provides a comprehensive overview, classification, and critical analysis of current applications, challenges, and future directions in this emerging field.
arXiv Detail & Related papers (2024-11-03T18:01:50Z) - EEGEncoder: Advancing BCI with Transformer-Based Motor Imagery Classification [11.687193535939798]
Brain-computer interfaces (BCIs) harness electroencephalographic signals for direct neural control of devices.
Traditional machine learning methods for EEG-based motor imagery (MI) classification encounter challenges such as manual feature extraction and susceptibility to noise.
This paper introduces EEGEncoder, a deep learning framework that employs modified transformers and TCNs to surmount these limitations.
arXiv Detail & Related papers (2024-04-23T09:51:24Z) - EEG motor imagery decoding: A framework for comparative analysis with
channel attention mechanisms [3.1265626879839923]
Channel attention mechanisms can be seen as a powerful evolution of spatial filters traditionally used for motor imagery decoding.
This study systematically compares such mechanisms by integrating them into a lightweight architecture framework to evaluate their impact.
Our architecture emphasizes simplicity, offering easy integration of channel attention mechanisms, while maintaining a high degree of generalizability across datasets.
arXiv Detail & Related papers (2023-10-17T12:25:31Z) - A Knowledge-Driven Cross-view Contrastive Learning for EEG
Representation [48.85731427874065]
This paper proposes a knowledge-driven cross-view contrastive learning framework (KDC2) to extract effective representations from EEG with limited labels.
The KDC2 method creates scalp and neural views of EEG signals, simulating the internal and external representation of brain activity.
By modeling prior neural knowledge based on neural information consistency theory, the proposed method extracts invariant and complementary neural knowledge to generate combined representations.
arXiv Detail & Related papers (2023-09-21T08:53:51Z) - The evolution of AI approaches for motor imagery EEG-based BCIs [2.294014185517203]
The Motor Imagery (MI) electroencephalography (EEG) based Brain Computer Interfaces (BCIs) allow the direct communication between humans and machines.
These systems open the possibility of developing applications that could span from the medical field to the entertainment industry.
Artificial Intelligence (AI) approaches become of fundamental importance especially when wanting to provide a correct and coherent feedback to BCI users.
arXiv Detail & Related papers (2022-10-11T07:42:54Z) - Spatio-Temporal Analysis of Transformer based Architecture for Attention
Estimation from EEG [2.7076510056452654]
We present a novel framework allowing us to retrieve the attention state, i.e degree of attention given to a specific task, from EEG signals.
While previous methods often consider the spatial relationship in EEG through electrodes, we propose here to also exploit the spatial and temporal information with a transformer-based network.
The proposed network has been trained and validated on two public datasets and achieves higher results compared to state-of-the-art models.
arXiv Detail & Related papers (2022-04-04T08:05:33Z) - Human Parity on CommonsenseQA: Augmenting Self-Attention with External
Attention [66.93307963324834]
We propose to augment the transformer architecture with an external attention mechanism to bring external knowledge and context to bear.
We find that the proposed external attention mechanism can significantly improve the performance of existing AI systems.
The proposed system reaches human parity on the open CommonsenseQA research benchmark with an accuracy of 89.4% in comparison to the human accuracy of 88.9%.
arXiv Detail & Related papers (2021-12-06T18:59:02Z) - EEG-based Brain-Computer Interfaces (BCIs): A Survey of Recent Studies
on Signal Sensing Technologies and Computational Intelligence Approaches and
their Applications [65.32004302942218]
Brain-Computer Interface (BCI) is a powerful communication tool between users and systems.
Recent technological advances have increased interest in electroencephalographic (EEG) based BCI for translational and healthcare applications.
arXiv Detail & Related papers (2020-01-28T10:36:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.