Combining Planning and Reinforcement Learning for Solving Relational Multiagent Domains
- URL: http://arxiv.org/abs/2502.19297v1
- Date: Wed, 26 Feb 2025 16:55:23 GMT
- Title: Combining Planning and Reinforcement Learning for Solving Relational Multiagent Domains
- Authors: Nikhilesh Prabhakar, Ranveer Singh, Harsha Kokel, Sriraam Natarajan, Prasad Tadepalli,
- Abstract summary: Multiagent Reinforcement Learning (MARL) poses significant challenges due to the exponential growth of state and action spaces.<n>We propose integrating relational planners as centralized controllers with efficient state abstractions and reinforcement learning.
- Score: 16.56659112347106
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Multiagent Reinforcement Learning (MARL) poses significant challenges due to the exponential growth of state and action spaces and the non-stationary nature of multiagent environments. This results in notable sample inefficiency and hinders generalization across diverse tasks. The complexity is further pronounced in relational settings, where domain knowledge is crucial but often underutilized by existing MARL algorithms. To overcome these hurdles, we propose integrating relational planners as centralized controllers with efficient state abstractions and reinforcement learning. This approach proves to be sample-efficient and facilitates effective task transfer and generalization.
Related papers
- Cooperative Multi-Agent Planning with Adaptive Skill Synthesis [16.228784877899976]
Multi-agent systems with reinforcement learning face challenges in sample efficiency, interpretability, and transferability.
We present a novel multi-agent architecture that integrates vision-language models (VLMs) with a dynamic skill library and structured communication for decentralized closed-loop decision-making.
arXiv Detail & Related papers (2025-02-14T13:23:18Z) - ComaDICE: Offline Cooperative Multi-Agent Reinforcement Learning with Stationary Distribution Shift Regularization [11.620274237352026]
offline reinforcement learning (RL) has garnered significant attention for its ability to learn effective policies from pre-collected datasets.
MARL presents additional challenges due to the large joint state-action space and the complexity of multi-agent behaviors.
We introduce a regularizer in the space of stationary distributions to better handle distributional shift.
arXiv Detail & Related papers (2024-10-02T18:56:10Z) - Multi-Agent Reinforcement Learning with a Hierarchy of Reward Machines [5.600971575680638]
We study the cooperative Multi-Agent Reinforcement Learning (MARL) problems using Reward Machines (RMs)
We present Multi-Agent Reinforcement Learning with a hierarchy of RMs (MAHRM) that is capable of dealing with more complex scenarios.
Experimental results in three cooperative MARL domains show that MAHRM outperforms other MARL methods using the same prior knowledge of high-level events.
arXiv Detail & Related papers (2024-03-08T06:38:22Z) - Enabling Multi-Agent Transfer Reinforcement Learning via Scenario
Independent Representation [0.7366405857677227]
Multi-Agent Reinforcement Learning (MARL) algorithms are widely adopted in tackling complex tasks that require collaboration and competition among agents.
We introduce a novel framework that enables transfer learning for MARL through unifying various state spaces into fixed-size inputs.
We show significant enhancements in multi-agent learning performance using maneuvering skills learned from other scenarios compared to agents learning from scratch.
arXiv Detail & Related papers (2024-02-13T02:48:18Z) - Promoting Generalization for Exact Solvers via Adversarial Instance
Augmentation [62.738582127114704]
Adar is a framework for understanding and improving the generalization of both imitation-learning-based (IL-based) and reinforcement-learning-based solvers (RL-based)
arXiv Detail & Related papers (2023-10-22T03:15:36Z) - Learning Reward Machines in Cooperative Multi-Agent Tasks [75.79805204646428]
This paper presents a novel approach to Multi-Agent Reinforcement Learning (MARL)
It combines cooperative task decomposition with the learning of reward machines (RMs) encoding the structure of the sub-tasks.
The proposed method helps deal with the non-Markovian nature of the rewards in partially observable environments.
arXiv Detail & Related papers (2023-03-24T15:12:28Z) - Locality Matters: A Scalable Value Decomposition Approach for
Cooperative Multi-Agent Reinforcement Learning [52.7873574425376]
Cooperative multi-agent reinforcement learning (MARL) faces significant scalability issues due to state and action spaces that are exponentially large in the number of agents.
We propose a novel, value-based multi-agent algorithm called LOMAQ, which incorporates local rewards in the Training Decentralized Execution paradigm.
arXiv Detail & Related papers (2021-09-22T10:08:15Z) - UneVEn: Universal Value Exploration for Multi-Agent Reinforcement
Learning [53.73686229912562]
We propose a novel MARL approach called Universal Value Exploration (UneVEn)
UneVEn learns a set of related tasks simultaneously with a linear decomposition of universal successor features.
Empirical results on a set of exploration games, challenging cooperative predator-prey tasks requiring significant coordination among agents, and StarCraft II micromanagement benchmarks show that UneVEn can solve tasks where other state-of-the-art MARL methods fail.
arXiv Detail & Related papers (2020-10-06T19:08:47Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - F2A2: Flexible Fully-decentralized Approximate Actor-critic for
Cooperative Multi-agent Reinforcement Learning [110.35516334788687]
Decentralized multi-agent reinforcement learning algorithms are sometimes unpractical in complicated applications.
We propose a flexible fully decentralized actor-critic MARL framework, which can handle large-scale general cooperative multi-agent setting.
Our framework can achieve scalability and stability for large-scale environment and reduce information transmission.
arXiv Detail & Related papers (2020-04-17T14:56:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.