論文の概要: I Know What I Don't Know: Improving Model Cascades Through Confidence Tuning
- arxiv url: http://arxiv.org/abs/2502.19335v1
- Date: Wed, 26 Feb 2025 17:29:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-27 14:56:53.770484
- Title: I Know What I Don't Know: Improving Model Cascades Through Confidence Tuning
- Title(参考訳): 私が知らないこと - 信頼性チューニングによるモデルカスケードの改善
- Authors: Stephan Rabanser, Nathalie Rauschmayr, Achin Kulshrestha, Petra Poklukar, Wittawat Jitkrittum, Sean Augenstein, Congchao Wang, Federico Tombari,
- Abstract要約: カスケード構成の小型モデルを校正するための新しい損失関数「ゲートキーパー」を導入する。
我々のアプローチは、より小さなモデルを微調整して、より大規模なモデルに複雑なタスクを遅延させながら、正しく実行できるタスクを確実に処理する。
- 参考スコア(独自算出の注目度): 42.1160183944637
- License:
- Abstract: Large-scale machine learning models deliver strong performance across a wide range of tasks but come with significant computational and resource constraints. To mitigate these challenges, local smaller models are often deployed alongside larger models, relying on routing and deferral mechanisms to offload complex tasks. However, existing approaches inadequately balance the capabilities of these models, often resulting in unnecessary deferrals or sub-optimal resource usage. In this work we introduce a novel loss function called Gatekeeper for calibrating smaller models in cascade setups. Our approach fine-tunes the smaller model to confidently handle tasks it can perform correctly while deferring complex tasks to the larger model. Moreover, it incorporates a mechanism for managing the trade-off between model performance and deferral accuracy, and is broadly applicable across various tasks and domains without any architectural changes. We evaluate our method on encoder-only, decoder-only, and encoder-decoder architectures. Experiments across image classification, language modeling, and vision-language tasks show that our approach substantially improves deferral performance.
- Abstract(参考訳): 大規模な機械学習モデルは、幅広いタスクにわたって強力なパフォーマンスを提供するが、かなりの計算量とリソースの制約が伴う。
これらの課題を軽減するため、局所的な小さなモデルは、複雑なタスクをオフロードするためのルーティングと遅延メカニズムに依存して、より大きなモデルと一緒にデプロイされることが多い。
しかし、既存のアプローチはこれらのモデルの能力のバランスが不十分であり、しばしば不要な遅延や準最適リソースの使用をもたらす。
本研究では,カスケードセットアップで小型モデルの校正を行うGatekeeperという新しい損失関数を導入する。
我々のアプローチは、より小さなモデルを微調整して、より大規模なモデルに複雑なタスクを遅延させながら、正しく実行できるタスクを確実に処理する。
さらに、モデルパフォーマンスと遅延精度のトレードオフを管理するためのメカニズムも組み込まれており、アーキテクチャ上の変更なしに様々なタスクやドメインに広く適用できます。
本稿では,エンコーダのみ,デコーダのみ,デコーダのみ,およびデコーダ・デコーダアーキテクチャについて評価する。
画像分類,言語モデリング,視覚言語タスクによる実験により,提案手法は遅延性能を大幅に改善することが示された。
関連論文リスト
- RedTest: Towards Measuring Redundancy in Deep Neural Networks Effectively [10.812755570974929]
深層学習モデル構造における冗長度を測定するために,モデル構造冗長スコア(MSRS)を用いる。
MSRSは、多くの最先端モデルにおける冗長性の問題を明らかにし、評価するのに効果的である。
最適なモデル構造を探索するための新しい冗長性認識アルゴリズムを設計する。
論文 参考訳(メタデータ) (2024-11-15T14:36:07Z) - Majority Kernels: An Approach to Leverage Big Model Dynamics for Efficient Small Model Training [32.154166415680066]
蒸留、圧縮、量子化といった手法は、高性能な大きなモデルを利用してより小さな性能のモデルを誘導するのに役立つ。
本稿では、単一トレーニングランが同時に、より大きなパフォーマンスモデルをトレーニングし、より小さなデプロイメントモデルを導出できるという仮説を考察する。
論文 参考訳(メタデータ) (2024-02-07T17:07:41Z) - Model Breadcrumbs: Scaling Multi-Task Model Merging with Sparse Masks [12.146530928616386]
目標問題に対する一般的なアプローチは、特定の目標タスクに対して、訓練済みの基礎モデルを微調整することである。
この研究は、補助的なタスクのスペクトルから導かれた同じ基礎モデルの複数の微調整をマージする問題に焦点を当てる。
事前学習したモデルの重み空間内でモデル適応を誘導する疎定義の重み集合からなる,新しい簡易な方法であるモデルブレッドクラブを導入する。
論文 参考訳(メタデータ) (2023-12-11T19:10:55Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - Model Reprogramming: Resource-Efficient Cross-Domain Machine Learning [65.268245109828]
視覚、言語、音声などのデータに富む領域では、ディープラーニングが高性能なタスク固有モデルを提供するのが一般的である。
リソース制限されたドメインでのディープラーニングは、(i)限られたデータ、(ii)制約付きモデル開発コスト、(iii)効果的な微調整のための適切な事前学習モデルの欠如など、多くの課題に直面している。
モデル再プログラミングは、ソースドメインから十分に訓練されたモデルを再利用して、モデル微調整なしでターゲットドメインのタスクを解くことで、リソース効率のよいクロスドメイン機械学習を可能にする。
論文 参考訳(メタデータ) (2022-02-22T02:33:54Z) - Top-KAST: Top-K Always Sparse Training [50.05611544535801]
トレーニングを通して一定間隔を保存するTop-KASTを提案する。
確立したImageNetベンチマークのトレーニングモデルでは,従来の作業と同等かそれ以上に動作可能であることを示す。
ImageNetの結果に加えて、言語モデリングの分野においても、我々のアプローチを実証しています。
論文 参考訳(メタデータ) (2021-06-07T11:13:05Z) - Balancing Accuracy and Latency in Multipath Neural Networks [0.09668407688201358]
我々は,一発のニューラルネットワーク探索モデルを用いて,難解な数のニューラルネットワークの性能を暗黙的に評価する。
本手法は,待ち時間が異なるモデル間の相対性能を正確にモデル化し,異なるデータセットをまたいだ精度で未検出モデルの性能を予測できることを示す。
論文 参考訳(メタデータ) (2021-04-25T00:05:48Z) - Sufficiently Accurate Model Learning for Planning [119.80502738709937]
本稿では,制約付きSufficiently Accurateモデル学習手法を提案する。
これはそのような問題の例を示し、いくつかの近似解がいかに近いかという定理を提示する。
近似解の質は、関数のパラメータ化、損失と制約関数の滑らかさ、モデル学習におけるサンプルの数に依存する。
論文 参考訳(メタデータ) (2021-02-11T16:27:31Z) - Goal-Aware Prediction: Learning to Model What Matters [105.43098326577434]
学習した前進力学モデルを使用する際の根本的な課題の1つは、学習したモデルの目的と下流のプランナーやポリシーの目標とのミスマッチである。
本稿では,タスク関連情報への直接的予測を提案し,そのモデルが現在のタスクを認識し,状態空間の関連量のみをモデル化することを奨励する。
提案手法は,目標条件付きシーンの関連部分を効果的にモデル化し,その結果,標準タスク非依存のダイナミックスモデルやモデルレス強化学習より優れていることがわかった。
論文 参考訳(メタデータ) (2020-07-14T16:42:59Z) - Self-Supervised GAN Compression [32.21713098893454]
従来の手法では,標準モデル圧縮手法であるウェイトプルーニングがGANに適用できないことを示す。
次に、訓練された判別器を用いて圧縮発電機の訓練を監督する自己教師圧縮手法を開発する。
我々は,このフレームワークが高い疎度に対して魅力的な性能を示し,新しいタスクやモデルに容易に適用できることを示し,異なるプルーニング粒度間の有意義な比較を可能にする。
論文 参考訳(メタデータ) (2020-07-03T04:18:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。