論文の概要: Evolutionary Algorithms Approach For Search Based On Semantic Document Similarity
- arxiv url: http://arxiv.org/abs/2502.19437v1
- Date: Thu, 20 Feb 2025 18:56:52 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-02 02:21:32.011119
- Title: Evolutionary Algorithms Approach For Search Based On Semantic Document Similarity
- Title(参考訳): 意味的文書類似性に基づく進化的アルゴリズムによる検索
- Authors: Chandrashekar Muniyappa, Eujin Kim,
- Abstract要約: 我々は,様々なテキスト表現技術を用いて,クラスタリング,レコメンデーション,質問応答システムを開発した。
テキストの意味的類似性を捉えるために,ユニバーサル・センテンス・ベクター (USE) が用いられていることを示す。
また, 遺伝的アルゴリズム (GA) と微分進化 (DE) のアルゴリズムを用いて, 関連するトップN文書の検索と検索を行う。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: Advancements in cloud computing and distributed computing have fostered research activities in Computer science. As a result, researchers have made significant progress in Neural Networks, Evolutionary Computing Algorithms like Genetic, and Differential evolution algorithms. These algorithms are used to develop clustering, recommendation, and question-and-answering systems using various text representation and similarity measurement techniques. In this research paper, Universal Sentence Encoder (USE) is used to capture the semantic similarity of text; And the transfer learning technique is used to apply Genetic Algorithm (GA) and Differential Evolution (DE) algorithms to search and retrieve relevant top N documents based on user query. The proposed approach is applied to the Stanford Question and Answer (SQuAD) Dataset to identify a user query. Finally, through experiments, we prove that text documents can be efficiently represented as sentence embedding vectors using USE to capture the semantic similarity, and by comparing the results of the Manhattan Distance, GA, and DE algorithms we prove that the evolutionary algorithms are good at finding the top N results than the traditional ranking approach.
- Abstract(参考訳): クラウドコンピューティングと分散コンピューティングの進歩は、コンピュータ科学の研究活動を後押ししてきた。
その結果、ニューラルネットワーク、遺伝的アルゴリズムのような進化的コンピューティングアルゴリズム、微分進化アルゴリズムにおいて、研究者は大きな進歩を遂げた。
これらのアルゴリズムは、様々なテキスト表現と類似度測定技術を用いてクラスタリング、レコメンデーション、問合せシステムを開発するために使用される。
本研究は, 汎用文エンコーダ (USE) を用いてテキストの意味的類似性を把握し, ユーザクエリに基づいて関連するトップN文書の検索と検索に遺伝的アルゴリズム (GA) と微分進化アルゴリズム (DE) を適用する。
提案手法はSQuAD(Stanford Question and Answer)データセットに適用され,ユーザクエリを識別する。
最後に,テキスト文書を文埋め込みベクトルとして効率的に表現して意味的類似性を捉えること,およびマンハッタン距離,GA,Dアルゴリズムの結果を比較することにより,進化的アルゴリズムが従来のランキング手法よりも上位Nの結果を見つけるのに優れていることを証明した。
関連論文リスト
- From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models [63.188607839223046]
この調査は、推論中に計算をスケールするメリットに焦点を当てている。
我々はトークンレベルの生成アルゴリズム、メタジェネレーションアルゴリズム、効率的な生成という3つの領域を統一的な数学的定式化の下で探索する。
論文 参考訳(メタデータ) (2024-06-24T17:45:59Z) - Relation-aware Ensemble Learning for Knowledge Graph Embedding [68.94900786314666]
我々は,既存の手法を関係性に配慮した方法で活用し,アンサンブルを学習することを提案する。
関係認識アンサンブルを用いてこれらのセマンティクスを探索すると、一般的なアンサンブル法よりもはるかに大きな検索空間が得られる。
本稿では,リレーショナルなアンサンブル重みを独立に検索する分割探索合成アルゴリズムRelEns-DSCを提案する。
論文 参考訳(メタデータ) (2023-10-13T07:40:12Z) - A Gold Standard Dataset for the Reviewer Assignment Problem [117.59690218507565]
類似度スコア(Similarity score)とは、論文のレビューにおいて、レビュアーの専門知識を数値で見積もるものである。
私たちのデータセットは、58人の研究者による477の自己申告された専門知識スコアで構成されています。
2つの論文をレビュアーに関連付けるタスクは、簡単なケースでは12%~30%、ハードケースでは36%~43%である。
論文 参考訳(メタデータ) (2023-03-23T16:15:03Z) - Learning with Differentiable Algorithms [6.47243430672461]
この論文は、古典的なアルゴリズムとニューラルネットワークのような機械学習システムを組み合わせることを探求している。
この論文はアルゴリズムの監督という概念を定式化し、ニューラルネットワークがアルゴリズムから、あるいは、アルゴリズムと連動して学ぶことを可能にする。
さらに、この論文では、微分可能なソートネットワーク、微分可能なソートゲート、微分可能な論理ゲートネットワークなど、微分可能なアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-09-01T17:30:00Z) - The CLRS Algorithmic Reasoning Benchmark [28.789225199559834]
アルゴリズムの学習表現は機械学習の新たな領域であり、ニューラルネットワークから古典的なアルゴリズムで概念をブリッジしようとしている。
本稿では,従来のアルゴリズムを包括するCLRS Algorithmic Reasoning Benchmarkを提案する。
我々のベンチマークは、ソート、探索、動的プログラミング、グラフアルゴリズム、文字列アルゴリズム、幾何アルゴリズムなど、様々なアルゴリズムの推論手順にまたがっている。
論文 参考訳(メタデータ) (2022-05-31T09:56:44Z) - Word Embeddings and Validity Indexes in Fuzzy Clustering [5.063728016437489]
単語の様々なベクトル表現、すなわち単語埋め込みのファジィに基づく解析。
我々は2つのファジィクラスタリングアルゴリズムをカウントベースの単語埋め込みに使用し、異なる手法と次元を持つ。
本研究では,様々なクラスタリング妥当性指標を用いた実験結果を評価し,異なるアルゴリズム変動と異なる埋め込み精度を比較した。
論文 参考訳(メタデータ) (2022-04-26T18:08:19Z) - AsySQN: Faster Vertical Federated Learning Algorithms with Better
Computation Resource Utilization [159.75564904944707]
垂直連合学習(VFL)のための非同期準ニュートン(AsySQN)フレームワークを提案する。
提案アルゴリズムは、逆ヘッセン行列を明示的に計算することなく、近似して降下ステップをスケールする。
本稿では,非同期計算を採用することにより,計算資源の有効利用が期待できることを示す。
論文 参考訳(メタデータ) (2021-09-26T07:56:10Z) - Evolving Reinforcement Learning Algorithms [186.62294652057062]
メタラーニング強化学習アルゴリズムの手法を提案する。
学習アルゴリズムはドメインに依存しないため、トレーニング中に見えない新しい環境に一般化することができる。
従来の制御タスク、gridworld型タスク、atariゲームよりも優れた一般化性能を得る2つの学習アルゴリズムに注目した。
論文 参考訳(メタデータ) (2021-01-08T18:55:07Z) - A Novel Word Sense Disambiguation Approach Using WordNet Knowledge Graph [0.0]
本稿では,SCSMM (Sequential Contextual Likeity Matrix multiplication) という知識に基づく単語感覚解読アルゴリズムを提案する。
SCSMMアルゴリズムは、セマンティックな類似性、知識、文書コンテキストを組み合わせて、それぞれローカルコンテキストのメリットを利用する。
提案されたアルゴリズムは、金の標準データセットの名詞を曖昧にするときに他のアルゴリズムよりも優れていた。
論文 参考訳(メタデータ) (2021-01-08T06:47:32Z) - Using the Full-text Content of Academic Articles to Identify and
Evaluate Algorithm Entities in the Domain of Natural Language Processing [7.163189900803623]
本稿では、自然言語処理(NLP)の分野を例として取り上げ、この分野の学術論文からアルゴリズムを同定する。
論文内容を手動で注釈付けしてアルゴリズムの辞書を構築し、辞書にアルゴリズムを含む文を辞書ベースのマッチングにより抽出する。
アルゴリズムに言及する記事の数は、そのアルゴリズムの影響を分析する指標として使用される。
論文 参考訳(メタデータ) (2020-10-21T08:24:18Z) - A Systematic Characterization of Sampling Algorithms for Open-ended
Language Generation [71.31905141672529]
本稿では,自己回帰型言語モデルに広く採用されている祖先サンプリングアルゴリズムについて検討する。
エントロピー低減, 秩序保存, 斜面保全の3つの重要な特性を同定した。
これらの特性を満たすサンプリングアルゴリズムのセットが,既存のサンプリングアルゴリズムと同等に動作することがわかった。
論文 参考訳(メタデータ) (2020-09-15T17:28:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。