論文の概要: Multispectral to Hyperspectral using Pretrained Foundational model
- arxiv url: http://arxiv.org/abs/2502.19451v1
- Date: Wed, 26 Feb 2025 06:18:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:24.626049
- Title: Multispectral to Hyperspectral using Pretrained Foundational model
- Title(参考訳): 事前学習基礎モデルを用いたマルチスペクトルからハイパースペクトルへ
- Authors: Ruben Gonzalez, Conrad M Albrecht, Nassim Ait Ali Braham, Devyani Lambhate, Joao Lucas de Sousa Almeida, Paolo Fraccaro, Benedikt Blumenstiel, Thomas Brunschwiler, Ranjini Bangalore,
- Abstract要約: ハイパースペクトルイメージングは詳細なスペクトル情報を提供し、CH4やNO2のような温室効果ガスをモニターする大きな可能性を提供する。
その適用は、限られたカバレッジと頻繁な再訪時間によって制限されている。
対照的に、マルチスペクトルイメージングは空間的および時間的カバレッジを提供するが、正確な検出に必要なスペクトルの粒度は欠如している。
- 参考スコア(独自算出の注目度): 1.3516162688685323
- License:
- Abstract: Hyperspectral imaging provides detailed spectral information, offering significant potential for monitoring greenhouse gases like CH4 and NO2. However, its application is constrained by limited spatial coverage and infrequent revisit times. In contrast, multispectral imaging delivers broader spatial and temporal coverage but lacks the spectral granularity required for precise GHG detection. To address these challenges, this study proposes Spectral and Spatial-Spectral transformer models that reconstruct hyperspectral data from multispectral inputs. The models in this paper are pretrained on EnMAP and EMIT datasets and fine-tuned on spatio-temporally aligned (Sentinel-2, EnMAP) and (HLS-S30, EMIT) image pairs respectively. Our model has the potential to enhance atmospheric monitoring by combining the strengths of hyperspectral and multispectral imaging systems.
- Abstract(参考訳): ハイパースペクトルイメージングは詳細なスペクトル情報を提供し、CH4やNO2のような温室効果ガスをモニターする大きな可能性を提供する。
しかし、その応用は限られた空間範囲と頻繁な再訪時間によって制約されている。
対照的に、マルチスペクトルイメージングはより広い空間的および時間的カバレッジを提供するが、正確なGHG検出に必要なスペクトルの粒度は欠如している。
これらの課題に対処するため,マルチスペクトル入力からハイパースペクトルデータを再構成するスペクトル変換モデルと空間スペクトル変換モデルを提案する。
本稿では,EnMAP と EMIT のデータセットで事前トレーニングを行い,時空間整列 (Sentinel-2, EnMAP) と (HLS-S30, EMIT) の画像ペアを微調整する。
我々のモデルは、ハイパースペクトルとマルチスペクトルイメージングシステムの強度を組み合わせることで、大気モニタリングを強化する可能性を秘めている。
関連論文リスト
- Unsupervised Hyperspectral and Multispectral Image Blind Fusion Based on Deep Tucker Decomposition Network with Spatial-Spectral Manifold Learning [15.86617273658407]
タッカー分解と空間スペクトル多様体学習(DTDNML)に基づくハイパースペクトル・マルチスペクトル画像の教師なしブラインド融合法を提案する。
本手法は,様々なリモートセンシングデータセット上でのハイパースペクトルとマルチスペクトル融合の精度と効率を向上させる。
論文 参考訳(メタデータ) (2024-09-15T08:58:26Z) - Correlation Hyperspectral Imaging [0.0]
ハイパースペクトルイメージングは、高解像度で光の空間分布とスペクトル分布の両方に関する情報を提供することを目的としている。
従来のハイパースペクトル画像技術の典型的な欠点を克服できる光強度相関を利用して、この制限に対処する。
空間・スペクトルの高分解能化,高速化,望ましくないスペクトル特性に対する感度化の両立は,ハイパースペクトルイメージング装置のパラダイム変更につながる。
論文 参考訳(メタデータ) (2024-07-18T19:54:44Z) - Hyperspectral Dataset and Deep Learning methods for Waste from Electric and Electronic Equipment Identification (WEEE) [0.0]
ハイパースペクトル画像分割のための多種多様なディープラーニングアーキテクチャの性能を評価する。
その結果,空間情報をスペクトルデータと組み合わせることで,セグメンテーション結果が改善された。
我々は、Tecnalia WEEE Hyperspectralデータセットのクリーニングと公開によって、この分野に貢献する。
論文 参考訳(メタデータ) (2024-07-05T13:45:11Z) - HyperSIGMA: Hyperspectral Intelligence Comprehension Foundation Model [88.13261547704444]
Hyper SIGMAは、HSI解釈のためのビジョントランスフォーマーベースの基礎モデルである。
特別に設計されたスペクトル拡張モジュールを使用して、空間的特徴とスペクトル的特徴を統合する。
スケーラビリティ、堅牢性、クロスモーダル転送能力、実世界の適用性において大きなメリットがある。
論文 参考訳(メタデータ) (2024-06-17T13:22:58Z) - Cross-Scope Spatial-Spectral Information Aggregation for Hyperspectral
Image Super-Resolution [47.12985199570964]
超高分解能超高分解能画像の長距離空間およびスペクトル類似性を調べるために,新しいクロススコープ空間スペクトル変換器(CST)を提案する。
具体的には,長距離空間スペクトル特性を包括的にモデル化するために,空間次元とスペクトル次元のクロスアテンション機構を考案する。
3つの超スペクトルデータセットに対する実験により、提案したCSTは他の最先端手法よりも定量的にも視覚的にも優れていることが示された。
論文 参考訳(メタデータ) (2023-11-29T03:38:56Z) - SpectralGPT: Spectral Remote Sensing Foundation Model [60.023956954916414]
SpectralGPTという名前のユニバーサルRS基盤モデルは、新しい3D生成事前学習変換器(GPT)を用いてスペクトルRS画像を処理するために構築されている。
既存の基礎モデルと比較して、SpectralGPTは、様々なサイズ、解像度、時系列、領域をプログレッシブトレーニング形式で対応し、広範なRSビッグデータのフル活用を可能にする。
我々の評価では、事前訓練されたスペクトルGPTモデルによる顕著な性能向上が強調され、地球科学分野におけるスペクトルRSビッグデータ応用の進展に有意な可能性を示唆している。
論文 参考訳(メタデータ) (2023-11-13T07:09:30Z) - Object Detection in Hyperspectral Image via Unified Spectral-Spatial
Feature Aggregation [55.9217962930169]
S2ADetは、高スペクトル画像に固有の豊富なスペクトル情報と空間補完情報を利用する物体検出器である。
S2ADetは既存の最先端メソッドを超え、堅牢で信頼性の高い結果を達成する。
論文 参考訳(メタデータ) (2023-06-14T09:01:50Z) - Multi-Temporal Spatial-Spectral Comparison Network for Hyperspectral
Anomalous Change Detection [32.23764287942984]
MTC-NET(Hyperspectral Anomalous Change Detection)のためのマルチテンポラル空間スペクトル比較ネットワークの提案を行った。
モデル全体はディープ・サイムズ・ネットワークであり、コントラスト学習により高スペクトル画像からの複雑な撮像条件から生じるスペクトル差を学習することを目的としている。
Viareggio 2013データセットの実験では、提案されたMCC-NETの有効性が示されている。
論文 参考訳(メタデータ) (2022-05-23T15:41:27Z) - Spectral Splitting and Aggregation Network for Hyperspectral Face
Super-Resolution [82.59267937569213]
高分解能(HR)ハイパースペクトル顔画像は、制御されていない条件下での顔関連コンピュータビジョンタスクにおいて重要な役割を果たす。
本稿では,ハイパースペクトル顔画像への深層学習手法の適用方法について検討する。
限られたトレーニングサンプルを用いたHFSRのためのスペクトル分割集約ネットワーク(SSANet)を提案する。
論文 参考訳(メタデータ) (2021-08-31T02:13:00Z) - Learning Spatial-Spectral Prior for Super-Resolution of Hyperspectral
Imagery [79.69449412334188]
本稿では,最先端の残差学習をベースとした単一グレー/RGB画像の超解像化手法について検討する。
本稿では,空間情報とハイパースペクトルデータのスペクトル間の相関をフル活用するための空間スペクトル先行ネットワーク(SSPN)を提案する。
実験結果から,SSPSR法により高分解能高分解能高分解能画像の詳細が得られた。
論文 参考訳(メタデータ) (2020-05-18T14:25:50Z) - Hyperspectral-Multispectral Image Fusion with Weighted LASSO [68.04032419397677]
本稿では,高スペクトル像と多スペクトル像を融合させて高画質な高スペクトル出力を実現する手法を提案する。
提案したスパース融合と再構成は,既存の公開画像の手法と比較して,定量的に優れた結果が得られることを示す。
論文 参考訳(メタデータ) (2020-03-15T23:07:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。