Toward Human-AI Alignment in Large-Scale Multi-Player Games
- URL: http://arxiv.org/abs/2402.03575v2
- Date: Tue, 18 Jun 2024 20:23:37 GMT
- Title: Toward Human-AI Alignment in Large-Scale Multi-Player Games
- Authors: Sugandha Sharma, Guy Davidson, Khimya Khetarpal, Anssi Kanervisto, Udit Arora, Katja Hofmann, Ida Momennejad,
- Abstract summary: We analyze extensive human gameplay data from Xbox's Bleeding Edge (100K+ games)
We find that while human players exhibit variability in fight-flight and explore-exploit behavior, AI players tend towards uniformity.
These stark differences underscore the need for interpretable evaluation, design, and integration of AI in human-aligned applications.
- Score: 24.784173202415687
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Achieving human-AI alignment in complex multi-agent games is crucial for creating trustworthy AI agents that enhance gameplay. We propose a method to evaluate this alignment using an interpretable task-sets framework, focusing on high-level behavioral tasks instead of low-level policies. Our approach has three components. First, we analyze extensive human gameplay data from Xbox's Bleeding Edge (100K+ games), uncovering behavioral patterns in a complex task space. This task space serves as a basis set for a behavior manifold capturing interpretable axes: fight-flight, explore-exploit, and solo-multi-agent. Second, we train an AI agent to play Bleeding Edge using a Generative Pretrained Causal Transformer and measure its behavior. Third, we project human and AI gameplay to the proposed behavior manifold to compare and contrast. This allows us to interpret differences in policy as higher-level behavioral concepts, e.g., we find that while human players exhibit variability in fight-flight and explore-exploit behavior, AI players tend towards uniformity. Furthermore, AI agents predominantly engage in solo play, while humans often engage in cooperative and competitive multi-agent patterns. These stark differences underscore the need for interpretable evaluation, design, and integration of AI in human-aligned applications. Our study advances the alignment discussion in AI and especially generative AI research, offering a measurable framework for interpretable human-agent alignment in multiplayer gaming.
Related papers
- GRUtopia: Dream General Robots in a City at Scale [65.08318324604116]
This paper introduces project GRUtopia, the first simulated interactive 3D society designed for various robots.
GRScenes includes 100k interactive, finely annotated scenes, which can be freely combined into city-scale environments.
GRResidents is a Large Language Model (LLM) driven Non-Player Character (NPC) system that is responsible for social interaction.
arXiv Detail & Related papers (2024-07-15T17:40:46Z) - CivRealm: A Learning and Reasoning Odyssey in Civilization for
Decision-Making Agents [63.79739920174535]
We introduce CivRealm, an environment inspired by the Civilization game.
CivRealm stands as a unique learning and reasoning challenge for decision-making agents.
arXiv Detail & Related papers (2024-01-19T09:14:11Z) - Behavioural Cloning in VizDoom [1.4999444543328293]
This paper describes methods for training autonomous agents to play the game "Doom 2" through Imitation Learning (IL)
We also explore how Reinforcement Learning (RL) compares to IL for humanness by comparing camera movement and trajectory data.
arXiv Detail & Related papers (2024-01-08T16:15:43Z) - Promptable Behaviors: Personalizing Multi-Objective Rewards from Human
Preferences [53.353022588751585]
We present Promptable Behaviors, a novel framework that facilitates efficient personalization of robotic agents to diverse human preferences.
We introduce three distinct methods to infer human preferences by leveraging different types of interactions.
We evaluate the proposed method in personalized object-goal navigation and flee navigation tasks in ProcTHOR and RoboTHOR.
arXiv Detail & Related papers (2023-12-14T21:00:56Z) - The Rise and Potential of Large Language Model Based Agents: A Survey [91.71061158000953]
Large language models (LLMs) are regarded as potential sparks for Artificial General Intelligence (AGI)
We start by tracing the concept of agents from its philosophical origins to its development in AI, and explain why LLMs are suitable foundations for agents.
We explore the extensive applications of LLM-based agents in three aspects: single-agent scenarios, multi-agent scenarios, and human-agent cooperation.
arXiv Detail & Related papers (2023-09-14T17:12:03Z) - ProAgent: Building Proactive Cooperative Agents with Large Language
Models [89.53040828210945]
ProAgent is a novel framework that harnesses large language models to create proactive agents.
ProAgent can analyze the present state, and infer the intentions of teammates from observations.
ProAgent exhibits a high degree of modularity and interpretability, making it easily integrated into various coordination scenarios.
arXiv Detail & Related papers (2023-08-22T10:36:56Z) - Navigates Like Me: Understanding How People Evaluate Human-Like AI in
Video Games [36.96985093527702]
We collect hundreds of crowd-sourced assessments comparing the human-likeness of navigation behavior generated by our agent and baseline AI agents.
Our proposed agent passes a Turing Test, while the baseline agents do not.
This work provides insights into the characteristics that people consider human-like in the context of goal-directed video game navigation.
arXiv Detail & Related papers (2023-03-02T18:59:04Z) - Generative Personas That Behave and Experience Like Humans [3.611888922173257]
generative AI agents attempt to imitate particular playing behaviors represented as rules, rewards, or human demonstrations.
We extend the notion of behavioral procedural personas to cater for player experience, thus examining generative agents that can both behave and experience their game as humans would.
Our findings suggest that the generated agents exhibit distinctive play styles and experience responses of the human personas they were designed to imitate.
arXiv Detail & Related papers (2022-08-26T12:04:53Z) - Evaluation of Human-AI Teams for Learned and Rule-Based Agents in Hanabi [0.0]
We evaluate teams of humans and AI agents in the cooperative card game emphHanabi with both rule-based and learning-based agents.
We find that humans have a clear preference toward a rule-based AI teammate over a state-of-the-art learning-based AI teammate.
arXiv Detail & Related papers (2021-07-15T22:19:15Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
We argue that AI systems should be trained in a human-centered manner, directly optimized for team performance.
We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves.
Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance.
arXiv Detail & Related papers (2020-04-27T19:06:28Z) - Real-World Human-Robot Collaborative Reinforcement Learning [6.089774484591287]
We present a real-world setup of a human-robot collaborative maze game, designed to be non-trivial and only solvable through collaboration.
We use deep reinforcement learning for the control of the robotic agent, and achieve results within 30 minutes of real-world play.
We present results on how co-policy learning occurs over time between the human and the robotic agent resulting in each participant's agent serving as a representation of how they would play the game.
arXiv Detail & Related papers (2020-03-02T19:34:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.