PhenoProfiler: Advancing Phenotypic Learning for Image-based Drug Discovery
- URL: http://arxiv.org/abs/2502.19568v1
- Date: Wed, 26 Feb 2025 21:20:43 GMT
- Title: PhenoProfiler: Advancing Phenotypic Learning for Image-based Drug Discovery
- Authors: Bo Li, Bob Zhang, Chengyang Zhang, Minghao Zhou, Weiliang Huang, Shihang Wang, Qing Wang, Mengran Li, Yong Zhang, Qianqian Song,
- Abstract summary: PhenoProfiler is an end-to-end tool that processes whole-slide multi-channel images directly into low-dimensional quantitative representations.<n>It is rigorously evaluated on large-scale publicly available datasets.<n> PhenoProfiler consistently outperforms state-of-the-art methods by up to 20%.
- Score: 22.153859584729133
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In the field of image-based drug discovery, capturing the phenotypic response of cells to various drug treatments and perturbations is a crucial step. However, existing methods require computationally extensive and complex multi-step procedures, which can introduce inefficiencies, limit generalizability, and increase potential errors. To address these challenges, we present PhenoProfiler, an innovative model designed to efficiently and effectively extract morphological representations, enabling the elucidation of phenotypic changes induced by treatments. PhenoProfiler is designed as an end-to-end tool that processes whole-slide multi-channel images directly into low-dimensional quantitative representations, eliminating the extensive computational steps required by existing methods. It also includes a multi-objective learning module to enhance robustness, accuracy, and generalization in morphological representation learning. PhenoProfiler is rigorously evaluated on large-scale publicly available datasets, including over 230,000 whole-slide multi-channel images in end-to-end scenarios and more than 8.42 million single-cell images in non-end-to-end settings. Across these benchmarks, PhenoProfiler consistently outperforms state-of-the-art methods by up to 20%, demonstrating substantial improvements in both accuracy and robustness. Furthermore, PhenoProfiler uses a tailored phenotype correction strategy to emphasize relative phenotypic changes under treatments, facilitating the detection of biologically meaningful signals. UMAP visualizations of treatment profiles demonstrate PhenoProfiler ability to effectively cluster treatments with similar biological annotations, thereby enhancing interpretability. These findings establish PhenoProfiler as a scalable, generalizable, and robust tool for phenotypic learning.
Related papers
- Causal integration of chemical structures improves representations of microscopy images for morphological profiling [25.027684911103897]
We introduce a representation learning framework, MICON, that models chemical compounds as treatments that induce counterfactual transformations of cell phenotypes.
We demonstrate that incorporating chemical compound information into the learning process provides consistent improvements in our evaluation setting.
Our findings point to a new direction for representation learning in morphological profiling, suggesting that methods should explicitly account for the multimodal nature of microscopy screening data.
arXiv Detail & Related papers (2025-04-13T12:27:21Z) - Revealing Subtle Phenotypes in Small Microscopy Datasets Using Latent Diffusion Models [0.815557531820863]
We propose a novel approach that leverages pre-trained latent diffusion models to uncover subtle phenotypic changes.<n>Our findings reveal that our approach enables effective detection of phenotypic variations, capturing both visually apparent and imperceptible differences.
arXiv Detail & Related papers (2025-02-12T15:45:19Z) - What Matters When Repurposing Diffusion Models for General Dense Perception Tasks? [49.84679952948808]
Recent works show promising results by simply fine-tuning T2I diffusion models for dense perception tasks.<n>We conduct a thorough investigation into critical factors that affect transfer efficiency and performance when using diffusion priors.<n>Our work culminates in the development of GenPercept, an effective deterministic one-step fine-tuning paradigm tailed for dense visual perception tasks.
arXiv Detail & Related papers (2024-03-10T04:23:24Z) - Seeing Unseen: Discover Novel Biomedical Concepts via
Geometry-Constrained Probabilistic Modeling [53.7117640028211]
We present a geometry-constrained probabilistic modeling treatment to resolve the identified issues.
We incorporate a suite of critical geometric properties to impose proper constraints on the layout of constructed embedding space.
A spectral graph-theoretic method is devised to estimate the number of potential novel classes.
arXiv Detail & Related papers (2024-03-02T00:56:05Z) - Morphological Profiling for Drug Discovery in the Era of Deep Learning [13.307277432389496]
We provide a comprehensive overview of the recent advances in the field of morphological profiling.
We place a particular emphasis on the application of deep learning in this pipeline.
arXiv Detail & Related papers (2023-12-13T05:08:32Z) - Machine Learning Small Molecule Properties in Drug Discovery [44.62264781248437]
We review a wide range of properties, including binding affinities, solubility, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity)
We discuss existing popular descriptors and embeddings, such as chemical fingerprints and graph-based neural networks.
Finally, techniques to provide an understanding of model predictions, especially for critical decision-making in drug discovery are assessed.
arXiv Detail & Related papers (2023-08-02T22:18:41Z) - Unpaired Image-to-Image Translation with Limited Data to Reveal Subtle
Phenotypes [0.5076419064097732]
We present an improved CycleGAN architecture that employs self-supervised discriminators to alleviate the need for numerous images.
We also provide results obtained with small biological datasets on obvious and non-obvious cell phenotype variations.
arXiv Detail & Related papers (2023-01-21T16:25:04Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - A parameter refinement method for Ptychography based on Deep Learning
concepts [55.41644538483948]
coarse parametrisation in propagation distance, position errors and partial coherence frequently menaces the experiment viability.
A modern Deep Learning framework is used to correct autonomously the setup incoherences, thus improving the quality of a ptychography reconstruction.
We tested our system on both synthetic datasets and also on real data acquired at the TwinMic beamline of the Elettra synchrotron facility.
arXiv Detail & Related papers (2021-05-18T10:15:17Z) - Deep Low-Shot Learning for Biological Image Classification and
Visualization from Limited Training Samples [52.549928980694695]
In situ hybridization (ISH) gene expression pattern images from the same developmental stage are compared.
labeling training data with precise stages is very time-consuming even for biologists.
We propose a deep two-step low-shot learning framework to accurately classify ISH images using limited training images.
arXiv Detail & Related papers (2020-10-20T06:06:06Z) - Learning Deformable Image Registration from Optimization: Perspective,
Modules, Bilevel Training and Beyond [62.730497582218284]
We develop a new deep learning based framework to optimize a diffeomorphic model via multi-scale propagation.
We conduct two groups of image registration experiments on 3D volume datasets including image-to-atlas registration on brain MRI data and image-to-image registration on liver CT data.
arXiv Detail & Related papers (2020-04-30T03:23:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.