Do Large Language Models Know How Much They Know?
- URL: http://arxiv.org/abs/2502.19573v1
- Date: Wed, 26 Feb 2025 21:33:06 GMT
- Title: Do Large Language Models Know How Much They Know?
- Authors: Gabriele Prato, Jerry Huang, Prasannna Parthasarathi, Shagun Sodhani, Sarath Chandar,
- Abstract summary: Large Language Models (LLMs) have emerged as highly capable systems.<n>A desired attribute of an intelligent system is its ability to recognize the scope of its own knowledge.<n>This benchmark evaluates whether the models recall excessive, insufficient, or the precise amount of information.
- Score: 15.558423196651995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have emerged as highly capable systems and are increasingly being integrated into various uses. However, the rapid pace of their deployment has outpaced a comprehensive understanding of their internal mechanisms and a delineation of their capabilities and limitations. A desired attribute of an intelligent system is its ability to recognize the scope of its own knowledge. To investigate whether LLMs embody this characteristic, we develop a benchmark designed to challenge these models to enumerate all information they possess on specific topics. This benchmark evaluates whether the models recall excessive, insufficient, or the precise amount of information, thereby indicating their awareness of their own knowledge. Our findings reveal that all tested LLMs, given sufficient scale, demonstrate an understanding of how much they know about specific topics. While different architectures exhibit varying rates of this capability's emergence, the results suggest that awareness of knowledge may be a generalizable attribute of LLMs. Further research is needed to confirm this potential and fully elucidate the underlying mechanisms.
Related papers
- How LLMs Learn: Tracing Internal Representations with Sparse Autoencoders [30.36521888592164]
Large Language Models (LLMs) demonstrate remarkable multilingual capabilities and broad knowledge.
We analyze how the information encoded in LLMs' internal representations evolves during the training process.
arXiv Detail & Related papers (2025-03-09T02:13:44Z) - Knowledge Mechanisms in Large Language Models: A Survey and Perspective [88.51320482620679]
This paper reviews knowledge mechanism analysis from a novel taxonomy including knowledge utilization and evolution.<n>We discuss what knowledge LLMs have learned, the reasons for the fragility of parametric knowledge, and the potential dark knowledge (hypothesis) that will be challenging to address.
arXiv Detail & Related papers (2024-07-22T06:15:59Z) - Large Language Models are Limited in Out-of-Context Knowledge Reasoning [65.72847298578071]
Large Language Models (LLMs) possess extensive knowledge and strong capabilities in performing in-context reasoning.
This paper focuses on a significant aspect of out-of-context reasoning: Out-of-Context Knowledge Reasoning (OCKR), which is to combine multiple knowledge to infer new knowledge.
arXiv Detail & Related papers (2024-06-11T15:58:59Z) - Can Language Models Act as Knowledge Bases at Scale? [24.99538360485476]
Large language models (LLMs) have demonstrated remarkable proficiency in understanding and generating responses to complex queries.
Our research investigates whether LLMs can effectively store, recall, and reason with knowledge on a large scale comparable to latest knowledge bases (KBs) such as Wikidata.
arXiv Detail & Related papers (2024-02-22T04:20:14Z) - A Comprehensive Study of Knowledge Editing for Large Language Models [82.65729336401027]
Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication.
This paper defines the knowledge editing problem and provides a comprehensive review of cutting-edge approaches.
We introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches.
arXiv Detail & Related papers (2024-01-02T16:54:58Z) - Knowledge Plugins: Enhancing Large Language Models for Domain-Specific
Recommendations [50.81844184210381]
We propose a general paradigm that augments large language models with DOmain-specific KnowledgE to enhance their performance on practical applications, namely DOKE.
This paradigm relies on a domain knowledge extractor, working in three steps: 1) preparing effective knowledge for the task; 2) selecting the knowledge for each specific sample; and 3) expressing the knowledge in an LLM-understandable way.
arXiv Detail & Related papers (2023-11-16T07:09:38Z) - Exploring the Cognitive Knowledge Structure of Large Language Models: An
Educational Diagnostic Assessment Approach [50.125704610228254]
Large Language Models (LLMs) have not only exhibited exceptional performance across various tasks, but also demonstrated sparks of intelligence.
Recent studies have focused on assessing their capabilities on human exams and revealed their impressive competence in different domains.
We conduct an evaluation using MoocRadar, a meticulously annotated human test dataset based on Bloom taxonomy.
arXiv Detail & Related papers (2023-10-12T09:55:45Z) - Investigating the Factual Knowledge Boundary of Large Language Models with Retrieval Augmentation [109.8527403904657]
We show that large language models (LLMs) possess unwavering confidence in their knowledge and cannot handle the conflict between internal and external knowledge well.
Retrieval augmentation proves to be an effective approach in enhancing LLMs' awareness of knowledge boundaries.
We propose a simple method to dynamically utilize supporting documents with our judgement strategy.
arXiv Detail & Related papers (2023-07-20T16:46:10Z) - Do Large Language Models Know What They Don't Know? [74.65014158544011]
Large language models (LLMs) have a wealth of knowledge that allows them to excel in various Natural Language Processing (NLP) tasks.
Despite their vast knowledge, LLMs are still limited by the amount of information they can accommodate and comprehend.
This study aims to evaluate LLMs' self-knowledge by assessing their ability to identify unanswerable or unknowable questions.
arXiv Detail & Related papers (2023-05-29T15:30:13Z) - Knowledge of Knowledge: Exploring Known-Unknowns Uncertainty with Large Language Models [44.117620571329596]
We focus on addressing known-unknown questions, characterized by high uncertainty due to the absence of definitive answers.
To facilitate our study, we collect a new dataset with Known-Unknown Questions (KUQ)
We examine the performance of open-source LLMs, fine-tuned using this dataset, in distinguishing between known and unknown queries.
arXiv Detail & Related papers (2023-05-23T05:59:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.