論文の概要: Weaker LLMs' Opinions Also Matter: Mixture of Opinions Enhances LLM's Mathematical Reasoning
- arxiv url: http://arxiv.org/abs/2502.19622v2
- Date: Wed, 05 Mar 2025 05:42:39 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-06 15:50:08.121288
- Title: Weaker LLMs' Opinions Also Matter: Mixture of Opinions Enhances LLM's Mathematical Reasoning
- Title(参考訳): Weaker LLMs氏の意見も重要: LLMの数学的推論を促進するオピニオンの混成
- Authors: Yanan Chen, Ali Pesaranghader, Tanmana Sadhu,
- Abstract要約: 大規模言語モデル(LLM)は、特に数学において、公式な推論能力への関心を高めている。
そこで本研究では,より弱いLLMからの意見の混合(MoO)を利用して,(相対的に)強いLLM推論を強化するポストトレーニング手法を提案する。
その結果,LLMの考え方を取り入れることで,数学的推論が平均5%向上し,推論作業における多様な視点の価値が浮き彫りになることがわかった。
- 参考スコア(独自算出の注目度): 3.0449420665138485
- License:
- Abstract: Recent advances in Large Language Models (LLMs) have raised interest in their formal reasoning capabilities, particularly in mathematics. While closed LLMs like GPT-4 perform well on mathematical benchmarks, e.g., GSM8K, it remains unclear whether small to medium-sized open LLMs can achieve similar performance, questioning their reliability. To close this gap, we propose a post-training approach leveraging a mixture of opinions (MoO) from weaker ancillary LLMs to enhance a (relatively) stronger LLM's reasoning. For that, each post-training sample is augmented with Chain-of-Thought (CoT) reasoning steps and answers from ancillary LLMs, enabling the main LLM to learn from diverse perspectives. We compare MoO with standard supervised fine-tuning (SFT), few-shot prompting, and the Mixture of Agents (MoA) method on mathematical reasoning benchmarks. Our results show that incorporating weaker LLMs' opinions improves mathematical reasoning by an average of 5%, highlighting the value of diverse perspectives in reasoning tasks.
- Abstract(参考訳): 大規模言語モデル(LLM)の最近の進歩は、特に数学において、その形式的推論能力への関心を高めている。
GPT-4 のような閉じた LLM は数学的なベンチマーク、例えば GSM8K でよく機能するが、中小の LLM が同様の性能を達成できるかどうかは不明であり、信頼性に疑問を呈している。
このギャップを埋めるために、より弱い補助LDMからの意見の混合(MoO)を活用して(相対的に)より強いLSM推論を強化するポストトレーニング手法を提案する。
そのため、各学習後のサンプルは、チェーン・オブ・ソート(CoT)推論ステップと補助LDMからの回答で強化され、主要なLCMは多様な視点から学習することができる。
数式推論ベンチマークにおいて、MoOと標準教師付き微調整(SFT)、少数ショットプロンプト、Mixture of Agents(MoA)法を比較した。
その結果,LLMの考え方を取り入れることで,数学的推論が平均5%向上し,推論作業における多様な視点の価値が浮き彫りになることがわかった。
関連論文リスト
- SoftCoT: Soft Chain-of-Thought for Efficient Reasoning with LLMs [48.28847964704554]
CoT(Chain-of-Thought)推論により、LLM(Large Language Models)は複雑な推論タスクを解くことができる。
本稿では,LLMの変更を必要としない連続空間推論のための新しい手法を提案する。
論文 参考訳(メタデータ) (2025-02-17T18:52:29Z) - Towards Reasoning Ability of Small Language Models [3.732224317444325]
我々は,小言語モデル (SLM) が競争力のある推論性能を実現できることを示す。
14の推論ベンチマークで6つのモデルファミリーから72のSLMを体系的に調査し、ベンチマークし、分析した。
我々の発見は、スケーリングが強力な推論を達成する唯一の方法である、という仮定に挑戦する。
論文 参考訳(メタデータ) (2025-02-17T08:59:16Z) - Not All LLM Reasoners Are Created Equal [58.236453890457476]
小学校数学におけるLLMの解答能力の深さについて検討する。
既存の数式語問題に対して,それらの性能を併用して評価する。
論文 参考訳(メタデータ) (2024-10-02T17:01:10Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Can LLMs Solve longer Math Word Problems Better? [47.227621867242]
数学語問題(MWP)は、大規模言語モデル(LLM)の能力を評価する上で重要な役割を果たす。
より長い文脈が数学的推論に与える影響は未解明のままである。
本研究は文脈長一般化可能性(CoLeG)の研究の先駆者である。
論文 参考訳(メタデータ) (2024-05-23T17:13:50Z) - Towards Efficient LLM Grounding for Embodied Multi-Agent Collaboration [70.09561665520043]
本稿では,多エージェント協調のための新しいフレームワークを提案する。これは,効率的な自己調整のための強化アドバンテージフィードバック(Reinforced Advantage feedback, ReAd)を導入する。
強化学習における重み付き回帰を多エージェントシステムに拡張して理論的解析を行う。
Over-AIと難解なRoCoBenchの実験は、ReAdが成功率のベースラインを超え、エージェントの相互作用ステップを著しく減少させることを示している。
論文 参考訳(メタデータ) (2024-05-23T08:33:19Z) - Direct Evaluation of Chain-of-Thought in Multi-hop Reasoning with Knowledge Graphs [52.42505579545893]
大規模言語モデル(LLM)は、回答とともにチェーン・オブ・シントの説明を生成するよう促されたとき、強い推論能力を示す。
本稿では,LLMの推論知識と生成したCoTの精度を評価するために,新しい識別的・生成的CoT評価パラダイムを提案する。
論文 参考訳(メタデータ) (2024-02-17T05:22:56Z) - Beyond Answers: Transferring Reasoning Capabilities to Smaller LLMs Using Multi-Teacher Knowledge Distillation [23.736611338497244]
TinyLLMは、複数の大規模LLMから小学生のLLMを学ぶための新しい知識蒸留パラダイムである。
そこで本研究では,文脈的に適切なシナリオにおいて,理科が正確で基礎が整っていることを保証するために,文脈内サンプル生成と教師強制型Chain-of-Thought戦略を導入する。
その結果,TinyLLMはモデルサイズがかなり小さいにもかかわらず,大きなLLMよりも優れていた。
論文 参考訳(メタデータ) (2024-02-07T06:48:24Z) - Benchmarking LLMs via Uncertainty Quantification [91.72588235407379]
オープンソースのLarge Language Models(LLM)の普及は、包括的な評価方法の緊急の必要性を強調している。
我々は不確実性定量化を統合した LLM のための新しいベンチマーク手法を提案する。
以上の結果より, 精度の高いLSMでは, 精度が低下する可能性があり, II) より大規模なLSMでは, より小型のLSMに比べて不確実性が高いこと, III) 命令ファインタニングではLCMの不確実性が高くなる傾向が示唆された。
論文 参考訳(メタデータ) (2024-01-23T14:29:17Z) - Large Language Model Cascades with Mixture of Thoughts Representations
for Cost-efficient Reasoning [19.472937476936636]
大きな言語モデル(LLM)は、様々なタスクで顕著なパフォーマンスを示していますが、この強力なパフォーマンスは、しばしば有料のAPIサービスを使用するコストが高くなります。
本稿では, LLM のコスト削減を目的とした LLM カスケードの構築について検討する。
提案するカスケードは,より強力なLCMのみを使用すれば性能が向上するが,コストの40%しか必要としない。
論文 参考訳(メタデータ) (2023-10-04T18:21:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。