Taxonomy, Opportunities, and Challenges of Representation Engineering for Large Language Models
- URL: http://arxiv.org/abs/2502.19649v3
- Date: Wed, 12 Mar 2025 13:31:36 GMT
- Title: Taxonomy, Opportunities, and Challenges of Representation Engineering for Large Language Models
- Authors: Jan Wehner, Sahar Abdelnabi, Daniel Tan, David Krueger, Mario Fritz,
- Abstract summary: RepE directly manipulates the model's internal representations.<n>It may offer more effective, interpretable, data-efficient, and flexible control over models' behavior.
- Score: 52.17340641038084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Representation Engineering (RepE) is a novel paradigm for controlling the behavior of LLMs. Unlike traditional approaches that modify inputs or fine-tune the model, RepE directly manipulates the model's internal representations. As a result, it may offer more effective, interpretable, data-efficient, and flexible control over models' behavior. We present the first comprehensive survey of RepE for LLMs, reviewing the rapidly growing literature to address key questions: What RepE methods exist and how do they differ? For what concepts and problems has RepE been applied? What are the strengths and weaknesses of RepE compared to other methods? To answer these, we propose a unified framework describing RepE as a pipeline comprising representation identification, operationalization, and control. We posit that while RepE methods offer significant potential, challenges remain, including managing multiple concepts, ensuring reliability, and preserving models' performance. Towards improving RepE, we identify opportunities for experimental and methodological improvements and construct a guide for best practices.
Related papers
- Improving Reasoning Performance in Large Language Models via Representation Engineering [2.0099933815960256]
We propose a representation engineering approach for large language models (LLMs)
Model activations are read from the residual stream of an LLM when processing a reasoning task.
We show that an LLM can, to a certain degree, be controlled to improve its perceived reasoning ability by modulating activations.
arXiv Detail & Related papers (2025-04-28T04:58:43Z) - Why Representation Engineering Works: A Theoretical and Empirical Study in Vision-Language Models [17.987141330832582]
We develop a theoretical framework that explains the stability of neural activity across layers using the principal eigenvector.
This work transforms Representation Engineering (RepE) into a structured theoretical framework, opening new directions for improving AI robustness, fairness, and transparency.
arXiv Detail & Related papers (2025-03-25T20:32:15Z) - Perspectives for Direct Interpretability in Multi-Agent Deep Reinforcement Learning [0.41783829807634765]
Multi-Agent Deep Reinforcement Learning (MADRL) was proven efficient in solving complex problems in robotics or games.<n>This paper advocates for direct interpretability, generating post hoc explanations directly from trained models.<n>We explore modern methods, including relevance backpropagation, knowledge edition, model steering, activation patching, sparse autoencoders and circuit discovery.
arXiv Detail & Related papers (2025-02-02T09:15:27Z) - Analyzing Fine-tuning Representation Shift for Multimodal LLMs Steering alignment [53.90425382758605]
We show how fine-tuning alters the internal structure of a model to specialize in new multimodal tasks.<n>Our work sheds light on how multimodal representations evolve through fine-tuning and offers a new perspective for interpreting model adaptation in multimodal tasks.
arXiv Detail & Related papers (2025-01-06T13:37:13Z) - Reference Trustable Decoding: A Training-Free Augmentation Paradigm for Large Language Models [79.41139393080736]
Large language models (LLMs) have rapidly advanced and demonstrated impressive capabilities.
In-Context Learning (ICL) and.
Efficient Fine-Tuning (PEFT) are currently two mainstream methods for augmenting.
LLMs to downstream tasks.
We propose Reference Trustable Decoding (RTD), a paradigm that allows models to quickly adapt to new tasks without fine-tuning.
arXiv Detail & Related papers (2024-09-30T10:48:20Z) - Recursive Introspection: Teaching Language Model Agents How to Self-Improve [30.086494067593268]
We develop RISE: Recursive IntroSpEction, an approach for fine-tuning large language models.
Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks.
arXiv Detail & Related papers (2024-07-25T17:35:59Z) - OLMES: A Standard for Language Model Evaluations [64.85905119836818]
OLMES is a documented, practical, open standard for reproducible language model evaluations.
It supports meaningful comparisons between smaller base models that require the unnatural "cloze" formulation of multiple-choice questions.
OLMES includes well-considered, documented recommendations guided by results from existing literature as well as new experiments resolving open questions.
arXiv Detail & Related papers (2024-06-12T17:37:09Z) - Adversarial Representation Engineering: A General Model Editing Framework for Large Language Models [7.41744853269583]
We propose an Adversarial Representation Engineering (ARE) framework to provide a unified and interpretable approach for conceptual model editing.
Experiments on multiple tasks demonstrate the effectiveness of ARE in various model editing scenarios.
arXiv Detail & Related papers (2024-04-21T19:24:15Z) - ReFT: Representation Finetuning for Language Models [74.51093640257892]
We develop a family of Representation Finetuning (ReFT) methods.
ReFTs operate on a frozen base model and learn task-specific interventions on hidden representations.
We showcase LoReFT on eight commonsense reasoning tasks, four arithmetic reasoning tasks, instruction-tuning, and GLUE.
arXiv Detail & Related papers (2024-04-04T17:00:37Z) - Explainable Recommender Systems via Resolving Learning Representations [57.24565012731325]
Explanations could help improve user experience and discover system defects.
We propose a novel explainable recommendation model through improving the transparency of the representation learning process.
arXiv Detail & Related papers (2020-08-21T05:30:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.