Recursive Introspection: Teaching Language Model Agents How to Self-Improve
- URL: http://arxiv.org/abs/2407.18219v2
- Date: Fri, 26 Jul 2024 17:50:27 GMT
- Title: Recursive Introspection: Teaching Language Model Agents How to Self-Improve
- Authors: Yuxiao Qu, Tianjun Zhang, Naman Garg, Aviral Kumar,
- Abstract summary: We develop RISE: Recursive IntroSpEction, an approach for fine-tuning large language models.
Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks.
- Score: 30.086494067593268
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A central piece in enabling intelligent agentic behavior in foundation models is to make them capable of introspecting upon their behavior, reasoning, and correcting their mistakes as more computation or interaction is available. Even the strongest proprietary large language models (LLMs) do not quite exhibit the ability of continually improving their responses sequentially, even in scenarios where they are explicitly told that they are making a mistake. In this paper, we develop RISE: Recursive IntroSpEction, an approach for fine-tuning LLMs to introduce this capability, despite prior work hypothesizing that this capability may not be possible to attain. Our approach prescribes an iterative fine-tuning procedure, which attempts to teach the model how to alter its response after having executed previously unsuccessful attempts to solve a hard test-time problem, with optionally additional environment feedback. RISE poses fine-tuning for a single-turn prompt as solving a multi-turn Markov decision process (MDP), where the initial state is the prompt. Inspired by principles in online imitation learning and reinforcement learning, we propose strategies for multi-turn data collection and training so as to imbue an LLM with the capability to recursively detect and correct its previous mistakes in subsequent iterations. Our experiments show that RISE enables Llama2, Llama3, and Mistral models to improve themselves with more turns on math reasoning tasks, outperforming several single-turn strategies given an equal amount of inference-time computation. We also find that RISE scales well, often attaining larger benefits with more capable models. Our analysis shows that RISE makes meaningful improvements to responses to arrive at the correct solution for challenging prompts, without disrupting one-turn abilities as a result of expressing more complex distributions.
Related papers
- Think Deep, Think Fast: Investigating Efficiency of Verifier-free Inference-time-scaling Methods [39.89239733570008]
This work conducts a comprehensive analysis of inference-time scaling methods for both reasoning and non-reasoning models.
We find that non-reasoning models, even with an extremely high inference budget, still fall substantially behind reasoning models.
For reasoning models, majority voting proves to be a robust inference strategy, generally competitive or outperforming other more sophisticated ITC methods.
arXiv Detail & Related papers (2025-04-18T19:32:55Z) - OpenVLThinker: An Early Exploration to Complex Vision-Language Reasoning via Iterative Self-Improvement [91.88062410741833]
This study investigates whether similar reasoning capabilities can be successfully integrated into large vision-language models (LVLMs)
We consider an approach that iteratively leverages supervised fine-tuning (SFT) on lightweight training data and Reinforcement Learning (RL) to further improve model generalization.
OpenVLThinker, a LVLM exhibiting consistently improved reasoning performance on challenging benchmarks such as MathVista, MathVerse, and MathVision, demonstrates the potential of our strategy for robust vision-language reasoning.
arXiv Detail & Related papers (2025-03-21T17:52:43Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASON is a logic-puzzle benchmark for evaluation of large language models' reasoning capabilities.
We introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move.
We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
arXiv Detail & Related papers (2025-02-27T16:23:25Z) - Agent-R: Training Language Model Agents to Reflect via Iterative Self-Training [18.896813839389893]
We propose an iterative self-training framework, Agent-R, that enables language Agent to Reflect on the fly.
Unlike traditional methods that reward or penalize actions based on correctness, Agent-R leverages MCTS to construct training data that recover correct trajectories from erroneous ones.
Our findings demonstrate that Agent-R continuously improves the model's ability to recover from errors and enables timely error correction.
arXiv Detail & Related papers (2025-01-20T11:46:04Z) - Enhancing LLM Reasoning via Critique Models with Test-Time and Training-Time Supervision [120.40788744292739]
We propose a two-player paradigm that separates the roles of reasoning and critique models.
We first propose AutoMathCritique, an automated and scalable framework for collecting critique data.
We demonstrate that the critique models consistently improve the actor's performance on difficult queries at test-time.
arXiv Detail & Related papers (2024-11-25T17:11:54Z) - SRA-MCTS: Self-driven Reasoning Augmentation with Monte Carlo Tree Search for Code Generation [14.786100203787194]
Large language models demonstrate exceptional performance in simple code generation tasks but face challenges in tackling complex problems.
We propose a reasoning-augmented data generation process, SRA-MCTS, which guides the model to autonomously generate high-quality intermediate reasoning paths.
Our method operates entirely through the model itself without requiring additional supervision.
arXiv Detail & Related papers (2024-11-17T12:31:04Z) - AssistRAG: Boosting the Potential of Large Language Models with an Intelligent Information Assistant [23.366991558162695]
Large Language Models generate factually incorrect information, known as "hallucination"
To cope with these challenges, we propose Assistant-based Retrieval-Augmented Generation (AssistRAG)
This assistant manages memory and knowledge through tool usage, action execution, memory building, and plan specification.
arXiv Detail & Related papers (2024-11-11T09:03:52Z) - S$^3$c-Math: Spontaneous Step-level Self-correction Makes Large Language Models Better Mathematical Reasoners [23.713779973116733]
Self-correction is a method that can stimulate the potential reasoning abilities of large language models (LLMs)
We propose S$3$c-Math, which are able to perform Spontaneous Step-level Self-correction for Mathematical reasoning.
arXiv Detail & Related papers (2024-09-03T01:40:21Z) - MR-Ben: A Meta-Reasoning Benchmark for Evaluating System-2 Thinking in LLMs [55.20845457594977]
Large language models (LLMs) have shown increasing capability in problem-solving and decision-making.
We present a process-based benchmark MR-Ben that demands a meta-reasoning skill.
Our meta-reasoning paradigm is especially suited for system-2 slow thinking.
arXiv Detail & Related papers (2024-06-20T03:50:23Z) - LLMs can learn self-restraint through iterative self-reflection [57.26854891567574]
Large Language Models (LLMs) must be capable of dynamically adapting their behavior based on their level of knowledge and uncertainty associated with specific topics.
This adaptive behavior, which we refer to as self-restraint, is non-trivial to teach.
We devise a utility function that can encourage the model to produce responses only when it is confident in them.
arXiv Detail & Related papers (2024-05-15T13:35:43Z) - ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent [50.508669199496474]
We develop a ReAct-style LLM agent with the ability to reason and act upon external knowledge.
We refine the agent through a ReST-like method that iteratively trains on previous trajectories.
Starting from a prompted large model and after just two iterations of the algorithm, we can produce a fine-tuned small model.
arXiv Detail & Related papers (2023-12-15T18:20:15Z) - R-Tuning: Instructing Large Language Models to Say `I Don't Know' [66.11375475253007]
Large language models (LLMs) have revolutionized numerous domains with their impressive performance but still face their challenges.
Previous instruction tuning methods force the model to complete a sentence no matter whether the model knows the knowledge or not.
We present a new approach called Refusal-Aware Instruction Tuning (R-Tuning)
Experimental results demonstrate R-Tuning effectively improves a model's ability to answer known questions and refrain from answering unknown questions.
arXiv Detail & Related papers (2023-11-16T08:45:44Z) - Imitating, Fast and Slow: Robust learning from demonstrations via
decision-time planning [96.72185761508668]
Planning at Test-time (IMPLANT) is a new meta-algorithm for imitation learning.
We demonstrate that IMPLANT significantly outperforms benchmark imitation learning approaches on standard control environments.
arXiv Detail & Related papers (2022-04-07T17:16:52Z) - Sequential Transfer in Reinforcement Learning with a Generative Model [48.40219742217783]
We show how to reduce the sample complexity for learning new tasks by transferring knowledge from previously-solved ones.
We derive PAC bounds on its sample complexity which clearly demonstrate the benefits of using this kind of prior knowledge.
We empirically verify our theoretical findings in simple simulated domains.
arXiv Detail & Related papers (2020-07-01T19:53:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.