Risk-aware Integrated Task and Motion Planning for Versatile Snake Robots under Localization Failures
- URL: http://arxiv.org/abs/2502.19690v1
- Date: Thu, 27 Feb 2025 02:02:51 GMT
- Title: Risk-aware Integrated Task and Motion Planning for Versatile Snake Robots under Localization Failures
- Authors: Ashkan Jasour, Guglielmo Daddi, Masafumi Endo, Tiago S. Vaquero, Michael Paton, Marlin P. Strub, Sabrina Corpino, Michel Ingham, Masahiro Ono, Rohan Thakker,
- Abstract summary: Snake robots enable mobility through extreme terrains and confined environments in terrestrial and space applications.<n>To address this issue, we propose Blind-motion with Intermittently Scheduled Scans (BLISS)<n>BLISS combines proprioception-only mobility with intermittent scans to be resilient against both localization failures and collision risks.
- Score: 6.250953826294371
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Snake robots enable mobility through extreme terrains and confined environments in terrestrial and space applications. However, robust perception and localization for snake robots remain an open challenge due to the proximity of the sensor payload to the ground coupled with a limited field of view. To address this issue, we propose Blind-motion with Intermittently Scheduled Scans (BLISS) which combines proprioception-only mobility with intermittent scans to be resilient against both localization failures and collision risks. BLISS is formulated as an integrated Task and Motion Planning (TAMP) problem that leads to a Chance-Constrained Hybrid Partially Observable Markov Decision Process (CC-HPOMDP), known to be computationally intractable due to the curse of history. Our novelty lies in reformulating CC-HPOMDP as a tractable, convex Mixed Integer Linear Program. This allows us to solve BLISS-TAMP significantly faster and jointly derive optimal task-motion plans. Simulations and hardware experiments on the EELS snake robot show our method achieves over an order of magnitude computational improvement compared to state-of-the-art POMDP planners and $>$ 50\% better navigation time optimality versus classical two-stage planners.
Related papers
- Space-Time Graphs of Convex Sets for Multi-Robot Motion Planning [2.3416394753138037]
Multi-Robot Motion Planning (MRMP) is a problem of computing problem of collision-free trajectories for multiple robots in continuous environments.
We propose Space-Time Graphs of Convex Sets (ST-GCS), a novel planner that systematically covers the collision-free space-time domain with convex sets instead of relying on random sampling.
We also propose Convex Decomposition (ECD) to "reserve" trajectories astemporal obstacles, addressing maintaining a collision-free space-time graph sets for subsequent planning.
arXiv Detail & Related papers (2025-03-01T18:28:57Z) - Simultaneous Multi-Robot Motion Planning with Projected Diffusion Models [57.45019514036948]
Simultaneous MRMP Diffusion (SMD) is a novel approach integrating constrained optimization into the diffusion sampling process to produce kinematically feasible trajectories.<n>The paper introduces a comprehensive MRMP benchmark to evaluate trajectory planning algorithms across scenarios with varying robot densities, obstacle complexities, and motion constraints.
arXiv Detail & Related papers (2025-02-05T20:51:28Z) - Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance.
This problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation.
We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets.
arXiv Detail & Related papers (2024-09-29T23:57:25Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Integrating DeepRL with Robust Low-Level Control in Robotic Manipulators for Non-Repetitive Reaching Tasks [0.24578723416255746]
In robotics, contemporary strategies are learning-based, characterized by a complex black-box nature and a lack of interpretability.
We propose integrating a collision-free trajectory planner based on deep reinforcement learning (DRL) with a novel auto-tuning low-level control strategy.
arXiv Detail & Related papers (2024-02-04T15:54:03Z) - Neural Potential Field for Obstacle-Aware Local Motion Planning [46.42871544295734]
We propose a neural network model that returns a differentiable collision cost based on robot pose, obstacle map, and robot footprint.
Our architecture includes neural image encoders, which transform obstacle maps and robot footprints into embeddings.
Experiment on Husky UGV mobile robot showed that our approach allows real-time and safe local planning.
arXiv Detail & Related papers (2023-10-25T05:00:21Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Distributing Collaborative Multi-Robot Planning with Gaussian Belief
Propagation [13.65857209749568]
We demonstrate a new purely distributed technique based on a generic factor graph defining dynamics and collision constraints.
We show that our method allows extremely high performance collaborative planning in a simulated road traffic scenario.
arXiv Detail & Related papers (2022-03-22T11:13:36Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.