Distributing Collaborative Multi-Robot Planning with Gaussian Belief
Propagation
- URL: http://arxiv.org/abs/2203.11618v1
- Date: Tue, 22 Mar 2022 11:13:36 GMT
- Title: Distributing Collaborative Multi-Robot Planning with Gaussian Belief
Propagation
- Authors: Aalok Patwardhan, Riku Murai and Andrew J. Davison
- Abstract summary: We demonstrate a new purely distributed technique based on a generic factor graph defining dynamics and collision constraints.
We show that our method allows extremely high performance collaborative planning in a simulated road traffic scenario.
- Score: 13.65857209749568
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise coordinated planning enables safe and highly efficient motion when
many robots must work together in tight spaces, but this would normally require
centralised control of all devices which is difficult to scale. We demonstrate
a new purely distributed technique based on Gaussian Belief Propagation on
multi-robot planning problems formulated by a generic factor graph defining
dynamics and collision constraints. We show that our method allows extremely
high performance collaborative planning in a simulated road traffic scenario,
where vehicles are able to cross each other at a busy multi-lane junction while
maintaining much higher average speeds than alternative distributed planning
techniques. We encourage the reader to view the accompanying video
demonstration to this work at https://youtu.be/5d4LXbxgxaY.
Related papers
- Generalizability of Graph Neural Networks for Decentralized Unlabeled Motion Planning [72.86540018081531]
Unlabeled motion planning involves assigning a set of robots to target locations while ensuring collision avoidance.
This problem forms an essential building block for multi-robot systems in applications such as exploration, surveillance, and transportation.
We address this problem in a decentralized setting where each robot knows only the positions of its $k$-nearest robots and $k$-nearest targets.
arXiv Detail & Related papers (2024-09-29T23:57:25Z) - A Meta-Engine Framework for Interleaved Task and Motion Planning using Topological Refinements [51.54559117314768]
Task And Motion Planning (TAMP) is the problem of finding a solution to an automated planning problem.
We propose a general and open-source framework for modeling and benchmarking TAMP problems.
We introduce an innovative meta-technique to solve TAMP problems involving moving agents and multiple task-state-dependent obstacles.
arXiv Detail & Related papers (2024-08-11T14:57:57Z) - Communication- and Computation-Efficient Distributed Decision-Making in Multi-Robot Networks [2.8936428431504164]
We provide a distributed coordination paradigm that enables scalable and near-optimal joint motion planning among multiple robots.
Our algorithm is up to two orders faster than competitive near-optimal algorithms.
In simulations of surveillance tasks with up to 45 robots, it enables real-time planning at the order of 1 Hz with superior coverage performance.
arXiv Detail & Related papers (2024-07-15T01:25:39Z) - Accelerating Search-Based Planning for Multi-Robot Manipulation by Leveraging Online-Generated Experiences [20.879194337982803]
Multi-Agent Path-Finding (MAPF) algorithms have shown promise in discrete 2D domains, providing rigorous guarantees.
We propose an approach for accelerating conflict-based search algorithms by leveraging their repetitive and incremental nature.
arXiv Detail & Related papers (2024-03-29T20:31:07Z) - Simultaneous Contact-Rich Grasping and Locomotion via Distributed
Optimization Enabling Free-Climbing for Multi-Limbed Robots [60.06216976204385]
We present an efficient motion planning framework for simultaneously solving locomotion, grasping, and contact problems.
We demonstrate our proposed framework in the hardware experiments, showing that the multi-limbed robot is able to realize various motions including free-climbing at a slope angle 45deg with a much shorter planning time.
arXiv Detail & Related papers (2022-07-04T13:52:10Z) - Distributed Allocation and Scheduling of Tasks with Cross-Schedule
Dependencies for Heterogeneous Multi-Robot Teams [2.294915015129229]
We present a distributed task allocation and scheduling algorithm for missions where the tasks of different robots are tightly coupled with temporal and precedence constraints.
An application of the planning procedure to a practical use case of a greenhouse maintained by a multi-robot system is given.
arXiv Detail & Related papers (2021-09-07T13:44:28Z) - SABER: Data-Driven Motion Planner for Autonomously Navigating
Heterogeneous Robots [112.2491765424719]
We present an end-to-end online motion planning framework that uses a data-driven approach to navigate a heterogeneous robot team towards a global goal.
We use model predictive control (SMPC) to calculate control inputs that satisfy robot dynamics, and consider uncertainty during obstacle avoidance with chance constraints.
recurrent neural networks are used to provide a quick estimate of future state uncertainty considered in the SMPC finite-time horizon solution.
A Deep Q-learning agent is employed to serve as a high-level path planner, providing the SMPC with target positions that move the robots towards a desired global goal.
arXiv Detail & Related papers (2021-08-03T02:56:21Z) - Learning Interaction-Aware Trajectory Predictions for Decentralized
Multi-Robot Motion Planning in Dynamic Environments [10.345048137438623]
We introduce a novel trajectory prediction model based on recurrent neural networks (RNN)
We then incorporate the trajectory prediction model into a decentralized model predictive control (MPC) framework for multi-robot collision avoidance.
arXiv Detail & Related papers (2021-02-10T11:11:08Z) - ReLMoGen: Leveraging Motion Generation in Reinforcement Learning for
Mobile Manipulation [99.2543521972137]
ReLMoGen is a framework that combines a learned policy to predict subgoals and a motion generator to plan and execute the motion needed to reach these subgoals.
Our method is benchmarked on a diverse set of seven robotics tasks in photo-realistic simulation environments.
ReLMoGen shows outstanding transferability between different motion generators at test time, indicating a great potential to transfer to real robots.
arXiv Detail & Related papers (2020-08-18T08:05:15Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.