論文の概要: CFTrack: Enhancing Lightweight Visual Tracking through Contrastive Learning and Feature Matching
- arxiv url: http://arxiv.org/abs/2502.19705v1
- Date: Thu, 27 Feb 2025 02:46:00 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:57:46.743062
- Title: CFTrack: Enhancing Lightweight Visual Tracking through Contrastive Learning and Feature Matching
- Title(参考訳): CFTrack: コントラスト学習と特徴マッチングによる軽量ビジュアルトラッキングの強化
- Authors: Juntao Liang, Jun Hou, Weijun Zhang, Yong Wang,
- Abstract要約: CFTrackは、コントラスト学習と特徴マッチングを統合して、識別的特徴表現を強化する軽量なトラッカーである。
我々はCFTrackがNVIDIA Jetson NXプラットフォーム上で毎秒136フレームで動作する、最先端の軽量トラッカーの多くを上回っていることを示す。
- 参考スコア(独自算出の注目度): 7.205438642578179
- License:
- Abstract: Achieving both efficiency and strong discriminative ability in lightweight visual tracking is a challenge, especially on mobile and edge devices with limited computational resources. Conventional lightweight trackers often struggle with robustness under occlusion and interference, while deep trackers, when compressed to meet resource constraints, suffer from performance degradation. To address these issues, we introduce CFTrack, a lightweight tracker that integrates contrastive learning and feature matching to enhance discriminative feature representations. CFTrack dynamically assesses target similarity during prediction through a novel contrastive feature matching module optimized with an adaptive contrastive loss, thereby improving tracking accuracy. Extensive experiments on LaSOT, OTB100, and UAV123 show that CFTrack surpasses many state-of-the-art lightweight trackers, operating at 136 frames per second on the NVIDIA Jetson NX platform. Results on the HOOT dataset further demonstrate CFTrack's strong discriminative ability under heavy occlusion.
- Abstract(参考訳): 軽量なビジュアルトラッキングにおける効率性と強力な識別能力の両立は、特に計算資源が限られているモバイルやエッジデバイスにおいて困難である。
従来の軽量トラッカーは閉塞や干渉下で頑丈さに苦しむことが多いが、資源制約を満たすように圧縮されたディープトラッカーは性能劣化に悩まされる。
これらの問題に対処するために、コントラスト学習と特徴マッチングを統合し、識別的特徴表現を強化する軽量トラッカーであるCFTrackを紹介する。
CFTrackは、適応的なコントラスト損失に最適化された新しいコントラスト特徴マッチングモジュールを通じて予測中の目標類似性を動的に評価し、トラッキング精度を向上させる。
LaSOT、TB100、UAV123の大規模な実験は、CFTrackがNVIDIA Jetson NXプラットフォームで毎秒136フレームで動作する、最先端の軽量トラッカーの多くを上回っていることを示している。
HOOTデータセットの結果はさらに、重閉塞下でのCFTrackの強力な識別能力を示している。
関連論文リスト
- Temporal Correlation Meets Embedding: Towards a 2nd Generation of JDE-based Real-Time Multi-Object Tracking [52.04679257903805]
共同検出・埋め込み(JDE)トラッカーは多目的追跡(MOT)タスクにおいて優れた性能を示した。
TCBTrackという名前のトラッカーは、複数の公開ベンチマークで最先端のパフォーマンスを実現しています。
論文 参考訳(メタデータ) (2024-07-19T07:48:45Z) - Exploring Dynamic Transformer for Efficient Object Tracking [58.120191254379854]
効率的なトラッキングのための動的トランスフォーマーフレームワークであるDyTrackを提案する。
DyTrackは、様々な入力に対して適切な推論ルートを設定することを学習し、利用可能な計算予算をより活用する。
複数のベンチマークの実験では、DyTrackは単一のモデルで有望な速度精度のトレードオフを実現している。
論文 参考訳(メタデータ) (2024-03-26T12:31:58Z) - Learning Disentangled Representation with Mutual Information
Maximization for Real-Time UAV Tracking [1.0541541376305243]
本稿では,相互情報(DR-MIM)による不整合表現を利用して,UAV追跡の精度と効率を向上させる。
我々のDR-MIMトラッカーは最先端のUAVトラッカーよりも優れています。
論文 参考訳(メタデータ) (2023-08-20T13:16:15Z) - SCTracker: Multi-object tracking with shape and confidence constraints [11.210661553388615]
本稿では,SCTrackerという形状制約と信頼性に基づく多目的トラッカーを提案する。
トラックと検出の間のコスト行列を計算するために, 形状制約付きユニオン距離の割り込みを適用した。
検出信頼度に基づくカルマンフィルタを用いて動作状態を更新し、検出信頼性が低い場合にトラッキング性能を向上させる。
論文 参考訳(メタデータ) (2023-05-16T15:18:42Z) - AVisT: A Benchmark for Visual Object Tracking in Adverse Visibility [125.77396380698639]
AVisTは、視認性の悪いさまざまなシナリオにおける視覚的トラッキングのためのベンチマークである。
AVisTは、80kの注釈付きフレームを持つ120の挑戦的なシーケンスで構成されており、18の多様なシナリオにまたがっている。
我々は、属性間でのトラッキング性能を詳細に分析し、AVisTで17の人気のトラッカーと最近のトラッカーをベンチマークした。
論文 参考訳(メタデータ) (2022-08-14T17:49:37Z) - DEFT: Detection Embeddings for Tracking [3.326320568999945]
我々は,DEFT と呼ばれる効率的な関節検出・追跡モデルを提案する。
提案手法は,外見に基づくオブジェクトマッチングネットワークと,下層のオブジェクト検出ネットワークとの協調学習に依存している。
DEFTは2Dオンライントラッキングリーダーボードのトップメソッドに匹敵する精度とスピードを持っている。
論文 参考訳(メタデータ) (2021-02-03T20:00:44Z) - Object Tracking through Residual and Dense LSTMs [67.98948222599849]
LSTM(Long Short-Term Memory)リカレントニューラルネットワークに基づくディープラーニングベースのトラッカーが、強力な代替手段として登場した。
DenseLSTMはResidualおよびRegular LSTMより優れ、ニュアンセに対する高いレジリエンスを提供する。
ケーススタディは、他のトラッカーの堅牢性を高めるために残差ベースRNNの採用を支援する。
論文 参考訳(メタデータ) (2020-06-22T08:20:17Z) - Cascaded Regression Tracking: Towards Online Hard Distractor
Discrimination [202.2562153608092]
本稿では,2段階の逐次回帰トラッカーを提案する。
第1段階では, 容易に同定可能な負の候補を抽出する。
第2段階では、残留するあいまいな硬質試料をダブルチェックするために、離散サンプリングに基づくリッジ回帰を設計する。
論文 参考訳(メタデータ) (2020-06-18T07:48:01Z) - Robust Visual Object Tracking with Two-Stream Residual Convolutional
Networks [62.836429958476735]
視覚追跡のための2ストリーム残差畳み込みネットワーク(TS-RCN)を提案する。
私たちのTS-RCNは、既存のディープラーニングベースのビジュアルトラッカーと統合することができます。
トラッキング性能をさらに向上するため、我々はResNeXtを特徴抽出バックボーンとして採用する。
論文 参考訳(メタデータ) (2020-05-13T19:05:42Z) - Rethinking Convolutional Features in Correlation Filter Based Tracking [0.0]
我々は階層的な機能ベースのビジュアルトラッカーを再検討し、ディープトラッカーの性能と効率の両方が、機能品質の低さによって制限されていることを発見した。
冗長な機能を取り除いた後、提案するトラッカーは性能と効率の両方で大幅に改善される。
論文 参考訳(メタデータ) (2019-12-30T04:39:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。