COSST: Multi-organ Segmentation with Partially Labeled Datasets Using
Comprehensive Supervisions and Self-training
- URL: http://arxiv.org/abs/2304.14030v3
- Date: Wed, 1 Nov 2023 21:58:06 GMT
- Title: COSST: Multi-organ Segmentation with Partially Labeled Datasets Using
Comprehensive Supervisions and Self-training
- Authors: Han Liu, Zhoubing Xu, Riqiang Gao, Hao Li, Jianing Wang, Guillaume
Chabin, Ipek Oguz, Sasa Grbic
- Abstract summary: Deep learning models have demonstrated remarkable success in multi-organ segmentation but typically require large-scale datasets with all organs of interest annotated.
It is crucial to investigate how to learn a unified model on the available partially labeled datasets to leverage their synergistic potential.
We propose a novel two-stage framework termed COSST, which effectively and efficiently integrates comprehensive supervision signals with self-training.
- Score: 15.639976408273784
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Deep learning models have demonstrated remarkable success in multi-organ
segmentation but typically require large-scale datasets with all organs of
interest annotated. However, medical image datasets are often low in sample
size and only partially labeled, i.e., only a subset of organs are annotated.
Therefore, it is crucial to investigate how to learn a unified model on the
available partially labeled datasets to leverage their synergistic potential.
In this paper, we systematically investigate the partial-label segmentation
problem with theoretical and empirical analyses on the prior techniques. We
revisit the problem from a perspective of partial label supervision signals and
identify two signals derived from ground truth and one from pseudo labels. We
propose a novel two-stage framework termed COSST, which effectively and
efficiently integrates comprehensive supervision signals with self-training.
Concretely, we first train an initial unified model using two ground
truth-based signals and then iteratively incorporate the pseudo label signal to
the initial model using self-training. To mitigate performance degradation
caused by unreliable pseudo labels, we assess the reliability of pseudo labels
via outlier detection in latent space and exclude the most unreliable pseudo
labels from each self-training iteration. Extensive experiments are conducted
on one public and three private partial-label segmentation tasks over 12 CT
datasets. Experimental results show that our proposed COSST achieves
significant improvement over the baseline method, i.e., individual networks
trained on each partially labeled dataset. Compared to the state-of-the-art
partial-label segmentation methods, COSST demonstrates consistent superior
performance on various segmentation tasks and with different training data
sizes.
Related papers
- GuidedNet: Semi-Supervised Multi-Organ Segmentation via Labeled Data Guide Unlabeled Data [4.775846640214768]
Semi-supervised multi-organ medical image segmentation aids physicians in improving disease diagnosis and treatment planning.
A key concept is that voxel features from labeled and unlabeled data close each other in the feature space more likely to belong to the same class.
We introduce a Knowledge Transfer Cross Pseudo-label Supervision (KT-CPS) strategy, which leverages the prior knowledge obtained from the labeled data to guide the training of the unlabeled data.
arXiv Detail & Related papers (2024-08-09T07:46:01Z) - Deep Mutual Learning among Partially Labeled Datasets for Multi-Organ Segmentation [9.240202592825735]
This paper proposes a two-stage multi-organ segmentation method based on mutual learning.
In the first stage, each partial-organ segmentation model utilizes the non-overlapping organ labels from different datasets.
In the second stage, each full-organ segmentation model is supervised by fully labeled datasets with pseudo labels.
arXiv Detail & Related papers (2024-07-17T14:41:25Z) - Leveraging Fixed and Dynamic Pseudo-labels for Semi-supervised Medical Image Segmentation [7.9449756510822915]
Semi-supervised medical image segmentation has gained growing interest due to its ability to utilize unannotated data.
The current state-of-the-art methods mostly rely on pseudo-labeling within a co-training framework.
We propose a novel approach where multiple pseudo-labels for the same unannotated image are used to learn from the unlabeled data.
arXiv Detail & Related papers (2024-05-12T11:30:01Z) - All Points Matter: Entropy-Regularized Distribution Alignment for
Weakly-supervised 3D Segmentation [67.30502812804271]
Pseudo-labels are widely employed in weakly supervised 3D segmentation tasks where only sparse ground-truth labels are available for learning.
We propose a novel learning strategy to regularize the generated pseudo-labels and effectively narrow the gaps between pseudo-labels and model predictions.
arXiv Detail & Related papers (2023-05-25T08:19:31Z) - Linking data separation, visual separation, and classifier performance
using pseudo-labeling by contrastive learning [125.99533416395765]
We argue that the performance of the final classifier depends on the data separation present in the latent space and visual separation present in the projection.
We demonstrate our results by the classification of five real-world challenging image datasets of human intestinal parasites with only 1% supervised samples.
arXiv Detail & Related papers (2023-02-06T10:01:38Z) - Triple-View Feature Learning for Medical Image Segmentation [9.992387025633805]
TriSegNet is a semi-supervised semantic segmentation framework.
It uses triple-view feature learning on a limited amount of labelled data and a large amount of unlabeled data.
arXiv Detail & Related papers (2022-08-12T14:41:40Z) - Towards Robust Partially Supervised Multi-Structure Medical Image
Segmentation on Small-Scale Data [123.03252888189546]
We propose Vicinal Labels Under Uncertainty (VLUU) to bridge the methodological gaps in partially supervised learning (PSL) under data scarcity.
Motivated by multi-task learning and vicinal risk minimization, VLUU transforms the partially supervised problem into a fully supervised problem by generating vicinal labels.
Our research suggests a new research direction in label-efficient deep learning with partial supervision.
arXiv Detail & Related papers (2020-11-28T16:31:00Z) - PseudoSeg: Designing Pseudo Labels for Semantic Segmentation [78.35515004654553]
We present a re-design of pseudo-labeling to generate structured pseudo labels for training with unlabeled or weakly-labeled data.
We demonstrate the effectiveness of the proposed pseudo-labeling strategy in both low-data and high-data regimes.
arXiv Detail & Related papers (2020-10-19T17:59:30Z) - Disentangling Human Error from the Ground Truth in Segmentation of
Medical Images [12.009437407687987]
We present a method for jointly learning, from purely noisy observations alone, the reliability of individual annotators and the true segmentation label distributions.
We demonstrate the utility of the method on three public medical imaging segmentation datasets with simulated (when necessary) and real diverse annotations.
arXiv Detail & Related papers (2020-07-31T11:03:12Z) - ATSO: Asynchronous Teacher-Student Optimization for Semi-Supervised
Medical Image Segmentation [99.90263375737362]
We propose ATSO, an asynchronous version of teacher-student optimization.
ATSO partitions the unlabeled data into two subsets and alternately uses one subset to fine-tune the model and updates the label on the other subset.
We evaluate ATSO on two popular medical image segmentation datasets and show its superior performance in various semi-supervised settings.
arXiv Detail & Related papers (2020-06-24T04:05:12Z) - 3D medical image segmentation with labeled and unlabeled data using
autoencoders at the example of liver segmentation in CT images [58.720142291102135]
This work investigates the potential of autoencoder-extracted features to improve segmentation with a convolutional neural network.
A convolutional autoencoder was used to extract features from unlabeled data and a multi-scale, fully convolutional CNN was used to perform the target task of 3D liver segmentation in CT images.
arXiv Detail & Related papers (2020-03-17T20:20:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.