Automatic Temporal Segmentation for Post-Stroke Rehabilitation: A Keypoint Detection and Temporal Segmentation Approach for Small Datasets
- URL: http://arxiv.org/abs/2502.19766v1
- Date: Thu, 27 Feb 2025 05:05:52 GMT
- Title: Automatic Temporal Segmentation for Post-Stroke Rehabilitation: A Keypoint Detection and Temporal Segmentation Approach for Small Datasets
- Authors: Jisoo Lee, Tamim Ahmed, Thanassis Rikakis, Pavan Turaga,
- Abstract summary: Stroke predominantly affects older adults, with 75% of cases occurring in individuals aged 65 and older.<n>Current assessment methods can often be subjective, inconsistent, and time-consuming.<n>This study aims to address these challenges by providing a solution for consistent and timely analysis.
- Score: 2.727171735150599
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rehabilitation is essential and critical for post-stroke patients, addressing both physical and cognitive aspects. Stroke predominantly affects older adults, with 75% of cases occurring in individuals aged 65 and older, underscoring the urgent need for tailored rehabilitation strategies in aging populations. Despite the critical role therapists play in evaluating rehabilitation progress and ensuring the effectiveness of treatment, current assessment methods can often be subjective, inconsistent, and time-consuming, leading to delays in adjusting therapy protocols. This study aims to address these challenges by providing a solution for consistent and timely analysis. Specifically, we perform temporal segmentation of video recordings to capture detailed activities during stroke patients' rehabilitation. The main application scenario motivating this study is the clinical assessment of daily tabletop object interactions, which are crucial for post-stroke physical rehabilitation. To achieve this, we present a framework that leverages the biomechanics of movement during therapy sessions. Our solution divides the process into two main tasks: 2D keypoint detection to track patients' physical movements, and 1D time-series temporal segmentation to analyze these movements over time. This dual approach enables automated labeling with only a limited set of real-world data, addressing the challenges of variability in patient movements and limited dataset availability. By tackling these issues, our method shows strong potential for practical deployment in physical therapy settings, enhancing the speed and accuracy of rehabilitation assessments.
Related papers
- Skeleton-Based Transformer for Classification of Errors and Better Feedback in Low Back Pain Physical Rehabilitation Exercises [0.9094127664014627]
In recent years, there has been great progress in quality assessment of physical rehabilitation exercises.
Most of them only provide a binary classification if the performance is correct or incorrect, and a few provide a continuous score.
In this work, we propose an algorithm for error classification of rehabilitation exercises, thus making the first step toward more detailed feedback to patients.
arXiv Detail & Related papers (2025-03-28T10:30:39Z) - A Medical Low-Back Pain Physical Rehabilitation Dataset for Human Body Movement Analysis [0.6990493129893111]
This article addresses four challenges to address and propose a medical dataset of clinical patients carrying out low back-pain rehabilitation exercises.<n>The dataset includes 3D Kinect skeleton positions and orientations, RGB videos, 2D skeleton data, and medical annotations to assess the correctness, and error classification and localisation of body part and timespan.
arXiv Detail & Related papers (2024-06-29T19:50:06Z) - Rehabilitation Exercise Quality Assessment through Supervised Contrastive Learning with Hard and Soft Negatives [2.166000001057538]
Exercise-based rehabilitation programs have proven to be effective in enhancing the quality of life and reducing mortality and rehospitalization rates.
These programs commonly prescribe a variety of exercise types, leading to a distinct challenge in rehabilitation exercise assessment datasets.
This paper introduces a novel supervised contrastive learning framework with hard and soft negative samples to train a single model applicable to all exercise types.
arXiv Detail & Related papers (2024-03-05T08:38:25Z) - Pruning the Way to Reliable Policies: A Multi-Objective Deep Q-Learning Approach to Critical Care [46.2482873419289]
We introduce a deep Q-learning approach to obtain more reliable critical care policies.
We evaluate our method in off-policy and offline settings using simulated environments and real health records from intensive care units.
arXiv Detail & Related papers (2023-06-13T18:02:57Z) - Rehabilitation Exercise Repetition Segmentation and Counting using
Skeletal Body Joints [6.918076156491651]
This paper presents a novel approach for segmenting and counting the repetitions of rehabilitation exercises performed by patients.
Skeletal body joints can be acquired through depth cameras or computer vision techniques applied to RGB videos of patients.
Various sequential neural networks are designed to analyze the sequences of skeletal body joints and perform repetition segmentation and counting.
arXiv Detail & Related papers (2023-04-19T15:22:15Z) - Easing Automatic Neurorehabilitation via Classification and Smoothness
Analysis [1.44744639843118]
We propose an automatic assessment pipeline that starts by recognizing patients' movements by means of a shallow deep learning architecture, then measuring the movement quality using jerk measure and related measures.
A particularity of this work is that the dataset used is clinically relevant, since it represents movements inspired from Fugl-Meyer a well common upper-limb clinical stroke assessment scale for stroke patients.
We show that it is possible to detect the contrast between healthy and patients movements in terms of smoothness, besides achieving conclusions about the patients' progress during the rehabilitation sessions that correspond to the clinicians' findings about each case.
arXiv Detail & Related papers (2022-12-09T13:59:14Z) - Automated Fidelity Assessment for Strategy Training in Inpatient
Rehabilitation using Natural Language Processing [53.096237570992294]
Strategy training is a rehabilitation approach that teaches skills to reduce disability among those with cognitive impairments following a stroke.
Standardized fidelity assessment is used to measure adherence to treatment principles.
We developed a rule-based NLP algorithm, a long-short term memory (LSTM) model, and a bidirectional encoder representation from transformers (BERT) model for this task.
arXiv Detail & Related papers (2022-09-14T15:33:30Z) - Vogtareuth Rehab Depth Datasets: Benchmark for Marker-less Posture
Estimation in Rehabilitation [55.41644538483948]
We propose two rehabilitation-specific pose datasets containing depth images and 2D pose information of patients performing rehab exercises.
We use a state-of-the-art marker-less posture estimation model which is trained on a non-rehab benchmark dataset.
We show that our dataset can be used to train pose models to detect rehab-specific complex postures.
arXiv Detail & Related papers (2021-08-23T16:18:26Z) - One-shot action recognition towards novel assistive therapies [63.23654147345168]
This work is motivated by the automated analysis of medical therapies that involve action imitation games.
The presented approach incorporates a pre-processing step that standardizes heterogeneous motion data conditions.
We evaluate the approach on a real use-case of automated video analysis for therapy support with autistic people.
arXiv Detail & Related papers (2021-02-17T19:41:37Z) - MIA-Prognosis: A Deep Learning Framework to Predict Therapy Response [58.0291320452122]
This paper aims at a unified deep learning approach to predict patient prognosis and therapy response.
We formalize the prognosis modeling as a multi-modal asynchronous time series classification task.
Our predictive model could further stratify low-risk and high-risk patients in terms of long-term survival.
arXiv Detail & Related papers (2020-10-08T15:30:17Z) - Designing Personalized Interaction of a Socially Assistive Robot for
Stroke Rehabilitation Therapy [64.52563354823711]
The research of a socially assistive robot has a potential to augment and assist physical therapy sessions for patients with neurological and musculoskeletal problems.
This paper presents an interactive approach of a socially assistive robot that can dynamically select kinematic features of assessment on individual patient's exercises to predict the quality of motion.
arXiv Detail & Related papers (2020-07-13T16:12:05Z) - A Review of Computational Approaches for Evaluation of Rehabilitation
Exercises [58.720142291102135]
This paper reviews computational approaches for evaluating patient performance in rehabilitation programs using motion capture systems.
The reviewed computational methods for exercise evaluation are grouped into three main categories: discrete movement score, rule-based, and template-based approaches.
arXiv Detail & Related papers (2020-02-29T22:18:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.