CLIP Under the Microscope: A Fine-Grained Analysis of Multi-Object Representation
- URL: http://arxiv.org/abs/2502.19842v2
- Date: Fri, 28 Feb 2025 19:00:13 GMT
- Title: CLIP Under the Microscope: A Fine-Grained Analysis of Multi-Object Representation
- Authors: Reza Abbasi, Ali Nazari, Aminreza Sefid, Mohammadali Banayeeanzade, Mohammad Hossein Rohban, Mahdieh Soleymani Baghshah,
- Abstract summary: Contrastive Language-Image Pre-training models excel in zero-shot classification, yet face challenges in complex multi-object scenarios.<n>This study offers a comprehensive analysis of CLIP's limitations in these contexts using a specialized dataset, ComCO.<n>Our findings reveal significant biases: the text encoder prioritizes first-mentioned objects, and the image encoder favors larger objects.
- Score: 3.1667055223489786
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Contrastive Language-Image Pre-training (CLIP) models excel in zero-shot classification, yet face challenges in complex multi-object scenarios. This study offers a comprehensive analysis of CLIP's limitations in these contexts using a specialized dataset, ComCO, designed to evaluate CLIP's encoders in diverse multi-object scenarios. Our findings reveal significant biases: the text encoder prioritizes first-mentioned objects, and the image encoder favors larger objects. Through retrieval and classification tasks, we quantify these biases across multiple CLIP variants and trace their origins to CLIP's training process, supported by analyses of the LAION dataset and training progression. Our image-text matching experiments show substantial performance drops when object size or token order changes, underscoring CLIP's instability with rephrased but semantically similar captions. Extending this to longer captions and text-to-image models like Stable Diffusion, we demonstrate how prompt order influences object prominence in generated images. For more details and access to our dataset and analysis code, visit our project repository: https://clip-oscope.github.io.
Related papers
- Analyzing CLIP's Performance Limitations in Multi-Object Scenarios: A Controlled High-Resolution Study [3.1667055223489786]
Contrastive Language-Image Pre-training (CLIP) models have demonstrated remarkable performance in zero-shot classification tasks.<n>This study presents a comprehensive analysis of CLIP's performance limitations in multi-object contexts through controlled experiments.
arXiv Detail & Related papers (2025-02-27T07:03:10Z) - DiffCLIP: Few-shot Language-driven Multimodal Classifier [19.145645804307566]
DiffCLIP is a novel framework that extends Contrastive Language-Image Pretraining.<n>It conveys comprehensive language-driven semantic information for accurate classification of high-dimensional multimodal remote sensing images.<n>DiffCLIP achieves an overall accuracy improvement of 10.65% across three remote sensing datasets compared with CLIP.
arXiv Detail & Related papers (2024-12-10T02:21:39Z) - TripletCLIP: Improving Compositional Reasoning of CLIP via Synthetic Vision-Language Negatives [65.82577305915643]
Contrastive Language-Image Pretraining (CLIP) models maximize the mutual information between text and visual modalities to learn representations.
We show that generating hard'' negative captions via in-context learning and corresponding negative images with text-to-image generators offers a solution.
We demonstrate that our method, named TripletCLIP, enhances the compositional capabilities of CLIP, resulting in an absolute improvement of over 9% on the SugarCrepe benchmark.
arXiv Detail & Related papers (2024-11-04T19:24:59Z) - MemeCLIP: Leveraging CLIP Representations for Multimodal Meme Classification [11.270267165348626]
We introduce a novel dataset PrideMM comprising 5,063 text-embedded images associated with the LGBTQ+ Pride movement.
We propose a novel framework MemeCLIP for efficient downstream learning while preserving the knowledge of the pre-trained CLIP model.
arXiv Detail & Related papers (2024-09-23T04:49:08Z) - Leveraging Cross-Modal Neighbor Representation for Improved CLIP Classification [54.96876797812238]
We present a novel CrOss-moDal nEighbor Representation(CODER) based on the distance structure between images and their neighbor texts.
The key to construct a high-quality CODER lies in how to create a vast amount of high-quality and diverse texts to match with images.
Experiment results across various datasets and models confirm CODER's effectiveness.
arXiv Detail & Related papers (2024-04-27T02:04:36Z) - LightCLIP: Learning Multi-Level Interaction for Lightweight
Vision-Language Models [45.672539931681065]
We propose a multi-level interaction paradigm for training lightweight CLIP models.
An auxiliary fusion module injecting unmasked image embedding into masked text embedding is proposed.
arXiv Detail & Related papers (2023-12-01T15:54:55Z) - Open-Vocabulary Camouflaged Object Segmentation [66.94945066779988]
We introduce a new task, open-vocabulary camouflaged object segmentation (OVCOS)
We construct a large-scale complex scene dataset (textbfOVCamo) containing 11,483 hand-selected images with fine annotations and corresponding object classes.
By integrating the guidance of class semantic knowledge and the supplement of visual structure cues from the edge and depth information, the proposed method can efficiently capture camouflaged objects.
arXiv Detail & Related papers (2023-11-19T06:00:39Z) - SILC: Improving Vision Language Pretraining with Self-Distillation [113.50400246862056]
We introduce SILC, a novel framework for vision language pretraining.
SILC improves image-text contrastive learning with the simple addition of local-to-global correspondence learning by self-distillation.
We show that distilling local image features from an exponential moving average (EMA) teacher model significantly improves model performance on dense predictions tasks like detection and segmentation.
arXiv Detail & Related papers (2023-10-20T08:44:47Z) - Text encoders bottleneck compositionality in contrastive vision-language
models [76.2406963762722]
We train text-only recovery probes that aim to reconstruct captions from single-vector text representations.
We find that CLIP's text encoder falls short on more compositional inputs.
Results suggest text-only recoverability is a necessary (but not sufficient) condition for modeling compositional factors.
arXiv Detail & Related papers (2023-05-24T08:48:44Z) - Non-Contrastive Learning Meets Language-Image Pre-Training [145.6671909437841]
We study the validity of non-contrastive language-image pre-training (nCLIP)
We introduce xCLIP, a multi-tasking framework combining CLIP and nCLIP, and show that nCLIP aids CLIP in enhancing feature semantics.
arXiv Detail & Related papers (2022-10-17T17:57:46Z) - Fine-grained Image Captioning with CLIP Reward [104.71533106301598]
We propose using CLIP, a multimodal encoder trained on huge image-text pairs from web, to calculate multimodal similarity and use it as a reward function.
We also propose a simple finetuning strategy of the CLIP text encoder to improve grammar that does not require extra text annotation.
In experiments on text-to-image retrieval and FineCapEval, the proposed CLIP-guided model generates more distinctive captions than the CIDEr-optimized model.
arXiv Detail & Related papers (2022-05-26T02:46:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.