Shifting the Paradigm: A Diffeomorphism Between Time Series Data Manifolds for Achieving Shift-Invariancy in Deep Learning
- URL: http://arxiv.org/abs/2502.19921v1
- Date: Thu, 27 Feb 2025 09:42:52 GMT
- Title: Shifting the Paradigm: A Diffeomorphism Between Time Series Data Manifolds for Achieving Shift-Invariancy in Deep Learning
- Authors: Berken Utku Demirel, Christian Holz,
- Abstract summary: Deep learning models are sensitive to input shifts that cause changes in output.<n>We propose a differentiable function that maps samples from their high-dimensional data manifold to another manifold of the same dimension.
- Score: 22.053675805215686
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Deep learning models lack shift invariance, making them sensitive to input shifts that cause changes in output. While recent techniques seek to address this for images, our findings show that these approaches fail to provide shift-invariance in time series, where the data generation mechanism is more challenging due to the interaction of low and high frequencies. Worse, they also decrease performance across several tasks. In this paper, we propose a novel differentiable bijective function that maps samples from their high-dimensional data manifold to another manifold of the same dimension, without any dimensional reduction. Our approach guarantees that samples -- when subjected to random shifts -- are mapped to a unique point in the manifold while preserving all task-relevant information without loss. We theoretically and empirically demonstrate that the proposed transformation guarantees shift-invariance in deep learning models without imposing any limits to the shift. Our experiments on six time series tasks with state-of-the-art methods show that our approach consistently improves the performance while enabling models to achieve complete shift-invariance without modifying or imposing restrictions on the model's topology. The source code is available on \href{https://github.com/eth-siplab/Shifting-the-Paradigm}{GitHub}.
Related papers
- Navigating Semantic Drift in Task-Agnostic Class-Incremental Learning [51.177789437682954]
Class-incremental learning (CIL) seeks to enable a model to sequentially learn new classes while retaining knowledge of previously learned ones.<n> Balancing flexibility and stability remains a significant challenge, particularly when the task ID is unknown.<n>We propose a novel semantic drift calibration method that incorporates mean shift compensation and covariance calibration.
arXiv Detail & Related papers (2025-02-11T13:57:30Z) - Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers [0.7704032792820767]
Deep neural networks are applied in more and more areas of everyday life.
They still lack essential abilities, such as robustly dealing with spatially transformed input signals.
We propose a novel technique to emulate such an inference process for neural nets.
arXiv Detail & Related papers (2024-05-06T09:47:29Z) - A Contrastive Variational Graph Auto-Encoder for Node Clustering [10.52321770126932]
State-of-the-art clustering methods have numerous challenges.
Existing VGAEs do not account for the discrepancy between the inference and generative models.
Our solution has two mechanisms to control the trade-off between Feature Randomness and Feature Drift.
arXiv Detail & Related papers (2023-12-28T05:07:57Z) - HyperInvariances: Amortizing Invariance Learning [10.189246340672245]
Invariance learning is expensive and data intensive for popular neural architectures.
We introduce the notion of amortizing invariance learning.
This framework can identify appropriate invariances in different downstream tasks and lead to comparable or better test performance.
arXiv Detail & Related papers (2022-07-17T21:40:37Z) - Deep invariant networks with differentiable augmentation layers [87.22033101185201]
Methods for learning data augmentation policies require held-out data and are based on bilevel optimization problems.
We show that our approach is easier and faster to train than modern automatic data augmentation techniques.
arXiv Detail & Related papers (2022-02-04T14:12:31Z) - Mitigating Generation Shifts for Generalized Zero-Shot Learning [52.98182124310114]
Generalized Zero-Shot Learning (GZSL) is the task of leveraging semantic information (e.g., attributes) to recognize the seen and unseen samples, where unseen classes are not observable during training.
We propose a novel Generation Shifts Mitigating Flow framework for learning unseen data synthesis efficiently and effectively.
Experimental results demonstrate that GSMFlow achieves state-of-the-art recognition performance in both conventional and generalized zero-shot settings.
arXiv Detail & Related papers (2021-07-07T11:43:59Z) - Hard-label Manifolds: Unexpected Advantages of Query Efficiency for
Finding On-manifold Adversarial Examples [67.23103682776049]
Recent zeroth order hard-label attacks on image classification models have shown comparable performance to their first-order, gradient-level alternatives.
It was recently shown in the gradient-level setting that regular adversarial examples leave the data manifold, while their on-manifold counterparts are in fact generalization errors.
We propose an information-theoretic argument based on a noisy manifold distance oracle, which leaks manifold information through the adversary's gradient estimate.
arXiv Detail & Related papers (2021-03-04T20:53:06Z) - Learning disentangled representations via product manifold projection [10.677966716893762]
We propose a novel approach to disentangle the generative factors of variation underlying a given set of observations.
Our method builds upon the idea that the (unknown) low-dimensional manifold underlying the data space can be explicitly modeled as a product of submanifolds.
arXiv Detail & Related papers (2021-03-02T10:59:59Z) - Evaluating Prediction-Time Batch Normalization for Robustness under
Covariate Shift [81.74795324629712]
We call prediction-time batch normalization, which significantly improves model accuracy and calibration under covariate shift.
We show that prediction-time batch normalization provides complementary benefits to existing state-of-the-art approaches for improving robustness.
The method has mixed results when used alongside pre-training, and does not seem to perform as well under more natural types of dataset shift.
arXiv Detail & Related papers (2020-06-19T05:08:43Z) - Embedding Propagation: Smoother Manifold for Few-Shot Classification [131.81692677836202]
We propose to use embedding propagation as an unsupervised non-parametric regularizer for manifold smoothing in few-shot classification.
We empirically show that embedding propagation yields a smoother embedding manifold.
We show that embedding propagation consistently improves the accuracy of the models in multiple semi-supervised learning scenarios by up to 16% points.
arXiv Detail & Related papers (2020-03-09T13:51:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.