論文の概要: Efficient Time Series Forecasting via Hyper-Complex Models and Frequency Aggregation
- arxiv url: http://arxiv.org/abs/2502.19983v1
- Date: Thu, 27 Feb 2025 11:03:37 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-28 14:56:37.163391
- Title: Efficient Time Series Forecasting via Hyper-Complex Models and Frequency Aggregation
- Title(参考訳): 超複雑モデルと周波数アグリゲーションによる効率的な時系列予測
- Authors: Eyal Yakir, Dor Tsur, Haim Permuter,
- Abstract要約: 時系列予測は、統計学と機械学習における長年の問題である。
本稿では、新しい複合価値アーキテクチャに基づく周波数情報集約(FIA)ネットワークを提案する。
各種時系列ベンチマークを用いてFIA-Netを評価し,提案手法が精度と効率の両面で既存の手法よりも優れていることを示す。
- 参考スコア(独自算出の注目度): 1.024113475677323
- License:
- Abstract: Time series forecasting is a long-standing problem in statistics and machine learning. One of the key challenges is processing sequences with long-range dependencies. To that end, a recent line of work applied the short-time Fourier transform (STFT), which partitions the sequence into multiple subsequences and applies a Fourier transform to each separately. We propose the Frequency Information Aggregation (FIA)-Net, which is based on a novel complex-valued MLP architecture that aggregates adjacent window information in the frequency domain. To further increase the receptive field of the FIA-Net, we treat the set of windows as hyper-complex (HC) valued vectors and employ HC algebra to efficiently combine information from all STFT windows altogether. Using the HC-MLP backbone allows for improved handling of sequences with long-term dependence. Furthermore, due to the nature of HC operations, the HC-MLP uses up to three times fewer parameters than the equivalent standard window aggregation method. We evaluate the FIA-Net on various time-series benchmarks and show that the proposed methodologies outperform existing state of the art methods in terms of both accuracy and efficiency. Our code is publicly available on https://anonymous.4open.science/r/research-1803/.
- Abstract(参考訳): 時系列予測は、統計学と機械学習における長年の問題である。
重要な課題の1つは、長距離依存によるシーケンスの処理である。
この目的のために、最近の研究の行では、ショートタイムフーリエ変換(STFT)を適用し、シーケンスを複数のサブシーケンスに分割し、それぞれにフーリエ変換を適用した。
本稿では、周波数領域に隣接するウィンドウ情報を集約する新しい複合値MLPアーキテクチャに基づく周波数情報集約(FIA)-Netを提案する。
FIA-Netの受容場をさらに高めるために、ウィンドウの集合を超複素(HC)値ベクトルとして扱い、すべてのSTFTウィンドウからの情報を効率的に結合するためにHC代数を用いる。
HC-MLPバックボーンを使用することで、長期間依存したシーケンスの処理が改善される。
さらに、HC操作の性質から、HC-MLPは等価な標準ウィンドウアグリゲーション法よりも最大3倍のパラメータを使用する。
各種時系列ベンチマークを用いてFIA-Netの評価を行い,提案手法が既存の最先端手法よりも精度と効率の両面で優れていることを示す。
私たちのコードはhttps://anonymous.4open.science/r/research-1803/で公開されています。
関連論文リスト
- LMS-AutoTSF: Learnable Multi-Scale Decomposition and Integrated Autocorrelation for Time Series Forecasting [4.075971633195745]
自動相関を組み込んだ新しい時系列予測アーキテクチャであるLMS-AutoTSFを紹介する。
事前定義されたトレンドと季節的なコンポーネントに依存するモデルとは異なり、LMS-AutoTSFはスケール毎に2つの独立したエンコーダを使用する。
このアプローチにおける重要な革新は、時間ステップの差分を計算することによって達成される自己相関の統合です。
論文 参考訳(メタデータ) (2024-12-09T09:31:58Z) - FAITH: Frequency-domain Attention In Two Horizons for Time Series Forecasting [13.253624747448935]
時系列予測は、産業機器の保守、気象学、エネルギー消費、交通流、金融投資など、様々な分野で重要な役割を果たしている。
現在のディープラーニングベースの予測モデルは、予測結果と基礎的真実の間に大きな違いを示すことが多い。
本稿では、時系列をトレンドと季節成分に分解する2つのホライズンズにおける周波数領域注意モデルを提案する。
論文 参考訳(メタデータ) (2024-05-22T02:37:02Z) - ATFNet: Adaptive Time-Frequency Ensembled Network for Long-term Time Series Forecasting [7.694820760102176]
ATFNetは、時間ドメインモジュールと周波数ドメインモジュールを組み合わせた革新的なフレームワークである。
本稿では,2つのモジュール間の重み調整機構であるドミナント・ハーモニック・シリーズ・エナジー・ウェイトリングを紹介する。
我々の複素数値スペクトル注意機構は、異なる周波数の組み合わせ間の複雑な関係を識別するための新しいアプローチを提供する。
論文 参考訳(メタデータ) (2024-04-08T04:41:39Z) - Frequency-domain MLPs are More Effective Learners in Time Series
Forecasting [67.60443290781988]
時系列予測は、金融、交通、エネルギー、医療など、さまざまな産業領域において重要な役割を果たしてきた。
最多ベースの予測手法は、ポイントワイドマッピングと情報のボトルネックに悩まされる。
本稿では、時系列予測のための周波数領域上に構築された、シンプルで効果的なアーキテクチャであるFreTSを提案する。
論文 参考訳(メタデータ) (2023-11-10T17:05:13Z) - Robust Detection of Lead-Lag Relationships in Lagged Multi-Factor Models [61.10851158749843]
データ固有のリード-ラグ関係を発見することで、重要な洞察を得ることができる。
階層化多要素モデルにおけるリードラグ関係のロバスト検出のためのクラスタリング駆動手法を開発した。
論文 参考訳(メタデータ) (2023-05-11T10:30:35Z) - FormerTime: Hierarchical Multi-Scale Representations for Multivariate
Time Series Classification [53.55504611255664]
formerTimeは、多変量時系列分類タスクの分類能力を改善する階層的表現モデルである。
1)時系列データから階層的なマルチスケール表現を学習し、(2)トランスフォーマーと畳み込みネットワークの強さを継承し、(3)自己維持メカニズムによって引き起こされる効率の課題に取り組む。
論文 参考訳(メタデータ) (2023-02-20T07:46:14Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
時系列予測は多くのアプリケーションにおいて非常に重要な課題である。
実世界の時系列データが短時間に記録されることが一般的であり、これはディープモデルと限られたノイズのある時系列との間に大きなギャップをもたらす。
本稿では,生成モデルを用いた時系列予測問題に対処し,拡散,雑音,ゆがみを備えた双方向変分自動エンコーダを提案する。
論文 参考訳(メタデータ) (2023-01-08T12:20:46Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
暗黙の神経表現(INR)は、データの正確で解像度に依存しないエンコーディングを提供する強力なツールとして最近登場した。
本稿では、INRを用いて時系列の表現を分析し、再構成精度とトレーニング収束速度の点で異なるアクティベーション関数を比較した。
本稿では,INRを利用して時系列データセット全体の圧縮潜在表現を学習するハイパーネットワークアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-08-11T14:05:51Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
本稿では、変換周波数領域において、ドメイン固有の特徴をフィルタリングする新しい周波数認識アーキテクチャを提案する。
3つのベンチマークの実験では、最先端の手法をそれぞれ3%、4%、9%のマージンで上回った。
論文 参考訳(メタデータ) (2022-03-24T07:26:29Z) - Spectral Temporal Graph Neural Network for Multivariate Time-series
Forecasting [19.50001395081601]
StemGNNはシリーズ間の相関と時間的依存関係をキャプチャする。
畳み込みと逐次学習モジュールによって効果的に予測できる。
StemGNNの有効性を示すために、10の実世界のデータセットに関する広範な実験を実施します。
論文 参考訳(メタデータ) (2021-03-13T13:44:20Z) - A Deep Structural Model for Analyzing Correlated Multivariate Time
Series [11.009809732645888]
相関した多変量時系列入力を処理できる深層学習構造時系列モデルを提案する。
モデルは、トレンド、季節性、イベントコンポーネントを明示的に学習し、抽出する。
我々は,様々な時系列データセットに関する総合的な実験を通して,そのモデルと最先端のいくつかの手法を比較した。
論文 参考訳(メタデータ) (2020-01-02T18:48:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。