3D-AffordanceLLM: Harnessing Large Language Models for Open-Vocabulary Affordance Detection in 3D Worlds
- URL: http://arxiv.org/abs/2502.20041v3
- Date: Tue, 04 Mar 2025 07:37:57 GMT
- Title: 3D-AffordanceLLM: Harnessing Large Language Models for Open-Vocabulary Affordance Detection in 3D Worlds
- Authors: Hengshuo Chu, Xiang Deng, Qi Lv, Xiaoyang Chen, Yinchuan Li, Jianye Hao, Liqiang Nie,
- Abstract summary: 3D Affordance detection is a challenging problem with broad applications on various robotic tasks.<n>We reformulate the traditional affordance detection paradigm into textit Reasoning Affordance (IRAS) task.<n>We propose 3D-ADLLM, a framework designed for reasoning affordance detection in 3D open-scene.
- Score: 81.14476072159049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: 3D Affordance detection is a challenging problem with broad applications on various robotic tasks. Existing methods typically formulate the detection paradigm as a label-based semantic segmentation task. This paradigm relies on predefined labels and lacks the ability to comprehend complex natural language, resulting in limited generalization in open-world scene. To address these limitations, we reformulate the traditional affordance detection paradigm into \textit{Instruction Reasoning Affordance Segmentation} (IRAS) task. This task is designed to output a affordance mask region given a query reasoning text, which avoids fixed categories of input labels. We accordingly propose the \textit{3D-AffordanceLLM} (3D-ADLLM), a framework designed for reasoning affordance detection in 3D open-scene. Specifically, 3D-ADLLM introduces large language models (LLMs) to 3D affordance perception with a custom-designed decoder for generating affordance masks, thus achieving open-world reasoning affordance detection. In addition, given the scarcity of 3D affordance datasets for training large models, we seek to extract knowledge from general segmentation data and transfer it to affordance detection. Thus, we propose a multi-stage training strategy that begins with a novel pre-training task, i.e., \textit{Referring Object Part Segmentation}~(ROPS). This stage is designed to equip the model with general recognition and segmentation capabilities at the object-part level. Then followed by fine-tuning with the IRAS task, 3D-ADLLM obtains the reasoning ability for affordance detection. In summary, 3D-ADLLM leverages the rich world knowledge and human-object interaction reasoning ability of LLMs, achieving approximately an 8\% improvement in mIoU on open-vocabulary affordance detection tasks.
Related papers
- OpenScan: A Benchmark for Generalized Open-Vocabulary 3D Scene Understanding [43.69535335079362]
Open-vocabulary 3D scene understanding (OV-3D) aims to localize and classify novel objects beyond the closed object classes.
Existing approaches and benchmarks primarily focus on the open vocabulary problem within the context of object classes.
We introduce a more challenging task called Generalized Open-Vocabulary 3D Scene Understanding (GOV-3D) to explore the open vocabulary problem beyond object classes.
arXiv Detail & Related papers (2024-08-20T17:31:48Z) - Reasoning3D -- Grounding and Reasoning in 3D: Fine-Grained Zero-Shot Open-Vocabulary 3D Reasoning Part Segmentation via Large Vision-Language Models [20.277479473218513]
We introduce a new task: Zero-Shot 3D Reasoning for parts searching and localization for objects.
We design a simple baseline method, Reasoning3D, with the capability to understand and execute complex commands.
We show that Reasoning3D can effectively localize and highlight parts of 3D objects based on implicit textual queries.
arXiv Detail & Related papers (2024-05-29T17:56:07Z) - Reason3D: Searching and Reasoning 3D Segmentation via Large Language Model [108.35777542298224]
Reason3D processes point cloud data and text prompts to produce textual responses and segmentation masks.<n>We propose a hierarchical mask decoder that employs a coarse-to-fine approach to segment objects within expansive scenes.
arXiv Detail & Related papers (2024-05-27T17:59:41Z) - Open-Vocabulary SAM3D: Towards Training-free Open-Vocabulary 3D Scene Understanding [41.96929575241655]
We introduce OV-SAM3D, a training-free method for understanding open-vocabulary 3D scenes.
This framework is designed to perform understanding tasks for any 3D scene without requiring prior knowledge of the scene.
Empirical evaluations on the ScanNet200 and nuScenes datasets demonstrate that our approach surpasses existing open-vocabulary methods in unknown open-world environments.
arXiv Detail & Related papers (2024-05-24T14:07:57Z) - Grounded 3D-LLM with Referent Tokens [58.890058568493096]
We propose Grounded 3D-LLM to consolidate various 3D vision tasks within a unified generative framework.
The model uses scene referent tokens as special noun phrases to reference 3D scenes.
Per-task instruction-following templates are employed to ensure natural and diversity in translating 3D vision tasks into language formats.
arXiv Detail & Related papers (2024-05-16T18:03:41Z) - Chat-Scene: Bridging 3D Scene and Large Language Models with Object Identifiers [65.51132104404051]
We introduce the use of object identifiers and object-centric representations to interact with scenes at the object level.
Our model significantly outperforms existing methods on benchmarks including ScanRefer, Multi3DRefer, Scan2Cap, ScanQA, and SQA3D.
arXiv Detail & Related papers (2023-12-13T14:27:45Z) - Generalized Robot 3D Vision-Language Model with Fast Rendering and Pre-Training Vision-Language Alignment [55.11291053011696]
This work presents a framework for dealing with 3D scene understanding when the labeled scenes are quite limited.<n>To extract knowledge for novel categories from the pre-trained vision-language models, we propose a hierarchical feature-aligned pre-training and knowledge distillation strategy.<n>In the limited reconstruction case, our proposed approach, termed WS3D++, ranks 1st on the large-scale ScanNet benchmark.
arXiv Detail & Related papers (2023-12-01T15:47:04Z) - CMR3D: Contextualized Multi-Stage Refinement for 3D Object Detection [57.44434974289945]
We propose Contextualized Multi-Stage Refinement for 3D Object Detection (CMR3D) framework.
Our framework takes a 3D scene as input and strives to explicitly integrate useful contextual information of the scene.
In addition to 3D object detection, we investigate the effectiveness of our framework for the problem of 3D object counting.
arXiv Detail & Related papers (2022-09-13T05:26:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.